Displaying all 9 publications

Abstract:
Sort:
  1. Kwong MMY, Lee JW, Samian MR, Watanabe N, Osada H, Ong EBB
    J Microbiol Methods, 2019 12;167:105743.
    PMID: 31629019 DOI: 10.1016/j.mimet.2019.105743
    This study compared the chronological life span and survival of Saccharomyces cerevisiae aged in a microplate or bottle, under different aeration and calorie restriction conditions. Our data shows that limited aeration in the microplate-aged culture contributed to slower outgrowth but extended yeast CLS compared to the bottle-aged culture.
    Matched MeSH terms: Microbiological Techniques/methods*
  2. Salleh FM, Moktar N, Yasin AM, Al-Mekhlafi HM, Anuar TS
    J Microbiol Methods, 2014 Nov;106:143-145.
    PMID: 25193442 DOI: 10.1016/j.mimet.2014.08.019
    To improve the stool concentration procedure, we modified different steps of the standard formalin-ether concentration technique and evaluated these modifications by examining stool samples collected in the field. Seven samples were found positive by the modified formalin-ether concentration technique (M-FECT). Therefore, the M-FECT procedure provides enhanced detection of Cryptosporidium oocysts.
    Matched MeSH terms: Microbiological Techniques/methods*
  3. Ganjali Dashti M, Abdeshahian P, Sudesh K, Phua KK
    Biofouling, 2016;32(4):477-87.
    PMID: 26963754 DOI: 10.1080/08927014.2015.1135328
    The objective of this study was to develop an optimized assay for Salmonella Typhi biofilm that mimics the environment of the gallbladder as an experimental model for chronic typhoid fever. Multi-factorial assays are difficult to optimize using traditional one-factor-at-a-time optimization methods. Response surface methodology (RSM) was used to optimize six key variables involved in S. Typhi biofilm formation on cholesterol-coated polypropylene 96-well microtiter plates. The results showed that bile (1.22%), glucose (2%), cholesterol (0.05%) and potassium chloride (0.25%) were critical factors affecting the amount of biofilm produced, but agitation (275 rpm) and sodium chloride (0.5%) had antagonistic effects on each other. Under these optimum conditions the maximum OD reading for biofilm formation was 3.4 (λ600 nm), and the coefficients of variation for intra-plate and inter-plate assays were 3% (n = 20) and 5% (n = 8), respectively. These results showed that RSM is an effective approach for biofilm assay optimization.
    Matched MeSH terms: Microbiological Techniques/methods
  4. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Microbiological Techniques/methods*
  5. Madhavan P, Jamal F, Chong PP, Ng KP
    Trop Biomed, 2011 Aug;28(2):269-74.
    PMID: 22041745
    The objective of our study was to study the effectiveness of CHROMagar Candida™ as the primary identification method for various clinical Candida isolates, other than the three suggested species by the manufacturer. We studied 34 clinical isolates which were isolated from patients in a local teaching hospital and 7 ATCC strains. These strains were first cultured in Sabouraud dextrose broth (SDB) for 36 hours at 35ºC, then on CHROMagar plates at 30ºC, 35ºC and 37ºC. The sensitivity of this agar to identify Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, Candida rugosa, Candida krusei and Candida parapsilosis ranged between 25 and 100% at 30ºC, 14% and 100% at 35ºC, 56% and 100% at 37ºC. The specificity of this agar was 100% at 30ºC, between 97% and 100% at 35ºC, 92% and 100% at 37ºC. The efficiency of this agar ranged between 88 and 100% at 30ºC, 83% and 100% at 35ºC, 88% and 100% at 37ºC. Each species also gave rise to a variety of colony colours ranging from pink to green to blue of different colony characteristics. Therefore, the chromogenic agar was found to be useful in our study for identifying clinical Candida isolates.
    Matched MeSH terms: Microbiological Techniques/methods*
  6. Banneheke H, Fernandopulle R, Gunasekara U, Barua A, Fernando N, Wickremasinghe R
    Trop Biomed, 2015 Jun;32(2):192-7.
    PMID: 26691246
    Wet mount microscopy is the most commonly used diagnostic method for trichomoniasis in clinical diagnostic services all over the world including Sri Lanka due to its availability, simplicity and is relatively inexpensive. However, Trichomonas culture and PCR are the gold standard tests. Unfortunately, neither the culture nor PCR is available for the diagnosis of trichomoniasis in Sri Lanka. Thus, it is important to validate the wet mount microscopy as it is the only available diagnostic test and has not been validated to date in Sri Lanka. The objective was to evaluate the validity and reliability of wet mount microscopy against gold standard Trichomonas culture among clinic based population of reproductive age group women in Western province, Sri Lanka. Women attending hospital and institutional based clinics were enrolled. They were interviewed and high vaginal swabs were taken for laboratory diagnosis by culture and wet mount microscopy. There were 601 participants in the age group of 15-45 years. Wet mount microscopy showed 68% sensitivity, 100% specificity, 100% positive (PPV) and 98% negative predictive values (NPV) (P=0.001, kappa=0.803) respectively against the gold standard culture. The area under the ROC curve was 0.840. Sensitivity of wet mount microscopy is low. However it has high validity and reliability as a specific diagnostic test for trichomoniasis. If it is to be used among women of reproductive age group in Western province, Sri Lanka, a culture method could be adopted as a second test to confirm the negative wet mount for symptomatic patients.
    Matched MeSH terms: Microbiological Techniques/methods*
  7. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Microbiological Techniques/methods
  8. Tay ST, Lotfalikhani A, Sabet NS, Ponnampalavanar S, Sulaiman S, Na SL, et al.
    Mycopathologia, 2014 Oct;178(3-4):307-14.
    PMID: 25022264 DOI: 10.1007/s11046-014-9778-9
    BACKGROUND: Candida nivariensis and C. bracarensis have been recently identified as emerging yeast pathogens which are phenotypically indistinguishable from C. glabrata. However, there is little data on the prevalence and antifungal susceptibilities of these species.

    OBJECTIVE: This study investigated the occurrence of C. nivariensis and C. bracarensis in a culture collection of 185 C. glabrata isolates at a Malaysian teaching hospital.

    METHODS: C. nivariensis was discriminated from C. glabrata using a PCR assay as described by Enache-Angoulvant et al. (J Clin Microbiol 49:3375-9, 2011). The identity of the isolates was confirmed by sequence analysis of the D1D2 domain and internal transcribed spacer region of the yeasts. The isolates were cultured on Chromogenic CHROMagar Candida (®) agar (Difco, USA), and their biochemical and enzymic profiles were determined. Antifungal susceptibilities of the isolates against amphotericin B, fluconazole, voriconazole and caspofungin were determined using E tests. Clotrimazole MICs were determined using a microbroth dilution method.

    RESULTS: There was a low prevalence (1.1 %) of C. nivariensis in our culture collection of C. glabrata. C. nivariensis was isolated from a blood culture and vaginal swab of two patients. C. nivariensis grew as white colonies on Chromogenic agar and demonstrated few positive reactions using biochemical tests. Enzymatic profiles of the C. nivariensis isolates were similar to that of C. glabrata. The isolates were susceptible to amphotericin B, fluconazole, voriconazole and caspofungin. Clotrimazole resistance is suspected in one isolate.

    CONCLUSION: This study reports for the first time the emergence of C. nivariensis in our clinical setting.

    Matched MeSH terms: Microbiological Techniques/methods
  9. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Microbiological Techniques/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links