Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Pritchard LI, Sendow I, Lunt R, Hassan SH, Kattenbelt J, Gould AR, et al.
    Virus Res, 2004 May;101(2):193-201.
    PMID: 15041187
    Bluetongue viruses (BTV) were isolated from sentinel cattle in Malaysia and at two sites in Indonesia. We identified eight serotypes some of which appeared to have a wide distribution throughout this region, while others were only isolated in Malaysia or Australia. Nearly half of the 24 known BTV serotypes have now been identified in Asia. Further, we investigated the genetic diversity of their RNA segments 3 and 10. Using partial nucleotide sequences of the RNA segment 3 (540 bp) which codes for the conserved core protein (VP3), the BTV isolates were found to be unique to the previously defined Australasian topotype and could be further subdivided into four distinct clades or genotypes. Certain of these genotypes appeared to be geographically restricted while others were distributed widely throughout the region. Similarly, the complete nucleotide sequences of the RNA segment 10 (822 bp), coding for the non-structural protein (NS3/3A), were also conserved and grouped into the five genotypes; the BTV isolates could be grouped into three Asian genotypes and two Nth American/Sth African genotypes.
    Matched MeSH terms: Molecular Epidemiology
  2. Holmes EC, Tio PH, Perera D, Muhi J, Cardosa J
    Virus Res, 2009 Jul;143(1):1-5.
    PMID: 19463715 DOI: 10.1016/j.virusres.2009.02.020
    Although dengue is a common disease in South-East Asia, there is a marked absence of virological data from the Malaysian state of Sarawak located on the island of Borneo. From 1997 to 2002 we noted the co-circulation of DENV-2, DENV-3 and DENV-4 in Sarawak. To determine the origins of these Sarawak viruses we obtained the complete E gene sequences of 21 isolates. A phylogenetic analysis revealed multiple entries of DENV-2 and DENV-4 into Sarawak, such that multiple lineages co-circulate, yet with little exportation from Sarawak. Notably, all viral isolates were most closely related to those circulating in different localities in South-East Asia. In sum, our analysis reveals a frequent traffic of DENV in South-East Asia, with Sarawak representing a local sink population.
    Matched MeSH terms: Molecular Epidemiology
  3. Khan A, Mushtaq MH, Ahmad MUD, Nazir J, Farooqi SH, Khan A
    Virus Res, 2017 08 15;240:56-63.
    PMID: 28757141 DOI: 10.1016/j.virusres.2017.07.022
    BACKGROUND: A widespread epidemic of equine influenza (EI) occurred in nonvaccinated equine population across multiple districts in Khyber Pakhtunkhwa Province of Pakistan during 2015-2016.

    OBJECTIVES AND METHODS: An epidemiological surveillance study was conducted from Oct 2015 to April 2016 to investigate the outbreak. EI virus strains were isolated in embryonated eggs from suspected equines swab samples and were subjected to genome sequencing using M13 tagged segment specific primers. Phylogenetic analyses of the nucleotide sequences were concluded using Geneious. Haemagglutinin (HA), Neuraminidase (NA), Matrix (M) and nucleoprotein (NP) genes nucleotide and amino acid sequences of the isolated viruses were aligned with those of OIE recommended, FC-1, FC-2, and contemporary isolates of influenza A viruses from other species.

    RESULTS: HA and NA genes amino acid sequences were very similar to Tennessee/14 and Malaysia/15 of FC-1 and clustered with the contemporary isolates recently reported in the USA. Phylogenetic analysis showed that these viruses were mostly identical (with 99.6% and 97.4% nucleotide homology) to, and were reassortants containing chicken/Pakistan/14 (H7N3) and Canine/Beijing/10 (H3N2) like M and NP genes. Genetic analysis indicated that A/equine/Pakistan/16 viruses were most probably the result of several re-assortments between the co-circulating avian and equine viruses, and were genetically unlike the other equine viruses due to the presence of H7N3 or H3N2 like M and NP genes.

    CONCLUSION: Epidemiological data analysis indicated the potential chance of mixed, and management such as mixed farming system by keeping equine, canine and backyard poultry together in confined premises as the greater risk factors responsible for the re-assortments. Other factors might have contributed to the spread of the epidemic, including low awareness level, poor control of equine movements, and absence of border control disease strategies.

    Matched MeSH terms: Molecular Epidemiology
  4. Choi KS, Kye SJ, Kim JY, Damasco VR, Sorn S, Lee YJ, et al.
    Virus Genes, 2013 Oct;47(2):244-9.
    PMID: 23764918 DOI: 10.1007/s11262-013-0930-2
    Three isolates of Newcastle disease virus (NDV) were isolated from tracheal samples of dead village chickens in two provinces (Phnom Penh and Kampong Cham) in Cambodia during 2011-2012. All of these Cambodian NDV isolates were categorized as velogenic pathotype, based on in vivo pathogenicity tests and F cleavage site motif sequence ((112)RRRKRF(117)). The phylogenetic analysis and the evolutionary distances based on the sequences of the F gene revealed that all the three field isolates of NDV from Cambodia form a distinct cluster (VIIh) together with three Indonesian strains and were assigned to the genotype VII within the class II. Further phylogenetic analysis based on the hyper-variable region of the F gene revealed that some of NDV strains from Malaysia since the mid-2000s were also classified into the VIIh virus. This indicates that the VIIh NDVs are spreading through Southeast Asia. The present investigation, therefore, emphasizes the importance of further surveillance of NDV in neighboring countries as well as throughout Southeast Asia to contain further spreading of these VIIh viruses.
    Matched MeSH terms: Molecular Epidemiology
  5. Hailemariam Z, Omar AR, Hair-Bejo M, Giap TC
    Virol J, 2008;5:128.
    PMID: 18954433 DOI: 10.1186/1743-422X-5-128
    Chicken anemia virus (CAV) is the causative agent of chicken infectious anemia (CIA). Study on the type of CAV isolates present and their genetic diversity, transmission to their progeny and level of protection afforded in the breeder farms is lacking in Malaysia. Hence, the present study was aimed to detect CAV from commercial broiler breeder farms and characterize CAV positive samples based on sequence and phylogenetic analysis of partial VP1 gene.
    Matched MeSH terms: Molecular Epidemiology
  6. Oong XY, Chook JB, Ng KT, Chow WZ, Chan KG, Hanafi NS, et al.
    Virol J, 2018 05 23;15(1):91.
    PMID: 29792212 DOI: 10.1186/s12985-018-1005-8
    BACKGROUND: Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections.
    METHODS: Severity of common cold symptoms of patients from a teaching hospital was assessed by a four-category scale and summed to obtain the total symptom severity score (TSSS). Association between the fusion and glycoprotein genes diversity, viral load (quantified using an improved RT-qPCR assay), and symptom severity were analyzed using bivariate and linear regression analyses.
    RESULTS: Among 81/3706 HMPV-positive patients, there were no significant differences in terms of demographics, number of days elapsed between symptom onset and clinic visit, respiratory symptoms manifestation and severity between different HMPV genotypes/sub-lineages. Surprisingly, elderly patients (≥65 years old) had lower severity of symptoms (indicated by TSSS) than young and middle age adults (p = 0.008). Nasopharyngeal viral load did not correlate with nor predict symptom severity of HMPV infection. Interestingly, at 3-5 days after symptom onset, genotype A-infected patients had higher viral load compared to genotype B (4.4 vs. 3.3 log10 RNA copies/μl) (p = 0.003).
    CONCLUSIONS: Overall, HMPV genetic diversity and viral load did not impact symptom severity in adults with acute respiratory tract infections. Differences in viral load dynamics over time between genotypes may have important implications on viral transmission.
    Study site: Primary Care Clinic, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Molecular Epidemiology
  7. Wang B, Lau KA, Ong LY, Shah M, Steain MC, Foley B, et al.
    Virology, 2007 Oct 25;367(2):288-97.
    PMID: 17604072
    The HIV protease-reverse transcriptase (PR-RT) (1047 bp), gp120-env (891 bp) and gp41-env (547 bp) regions from the plasma of 115 HIV-1-infected patients in Kuala Lumpur (KL), Malaysia were sequenced. Detailed phylogenetic and bootscanning analyses were performed to determine the mosaic structure of the HIV-1 strains and their recombination breakpoint(s). Among the 50 patient samples in which all three regions could be amplified, the HIV-1 CRF01_AE subtype (46%) was predominant followed by subtypes B (10%) and B' (6%). A total of 9/50 (18%) patients were infected with a CRF01_AE/B inter-subtype recombinant, displaying a recombinant form (RF)(PR-RT), CRF01_AE(gp120-env) and CRF01_AE(gp41-env). This RF was derived from the Thai variants of CRF01_AE and B' subtype, with two distinct B' subtype segments in the backbone of CRF01_AE, similar to the newly identified CRF33_01B. In addition, one sample demonstrated a close structural relationship with the new CRF33_01B in the PR-RT region but displayed B' segment in part of the env region (RF(PR-RT), CRF01_AE/B'(gp120-env) and B'(gp41-env)) indicating continuing evolution of CRF33_01B. The remaining 18% of samples were identified as unique recombinant forms (URFs).
    Matched MeSH terms: Molecular Epidemiology
  8. Li G, Pan P, He Q, Kong X, Wu K, Zhang W, et al.
    Virol Sin, 2017 Feb;32(1):63-72.
    PMID: 28120220 DOI: 10.1007/s12250-016-3872-8
    The dengue virus (DENV) is a vital global public health issue. The 2014 dengue epidemic in Guangzhou, China, caused approximately 40,000 cases of infection and five deaths. We carried out a comprehensive investigation aimed at identifying the transmission sources in this dengue epidemic. To analyze the phylogenetics of the 2014 dengue strains, the envelope (E) gene sequences from 17 viral strains isolated from 168 dengue patient serum samples were sequenced and a phylogenetic tree was reconstructed. All 17 strains were serotype I strains, including 8 genotype I and 9 genotype V strains. Additionally, 6 genotype I strains that were probably introduced to China from Thailand before 2009 were widely transmitted in the 2013 and 2014 epidemics, and they continued to circulate until 2015, with one affinis strain being found in Singapore. The other 2 genotype I strains were introduced from the Malaya Peninsula in 2014. The transmission source of the 9 genotype V strains was from Malaysia in 2014. DENVs of different serotypes and genotypes co-circulated in the 2014 dengue outbreak in Guangzhou. Moreover, not only had DENV been imported to Guangzhou, but it had also been gradually exported, as the viruses exhibited an enzootic transmission cycle in Guangzhou.
    Matched MeSH terms: Molecular Epidemiology
  9. Aklilu E, Zunita Z, Hassan L, Cheng CH
    Vet Microbiol, 2013 Jun 28;164(3-4):352-8.
    PMID: 23523336 DOI: 10.1016/j.vetmic.2013.02.030
    In this study, we report the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among veterinary students and personnel in Malaysia. Nasal and oral swabs were collected from 103 veterinary medicine students and 28 personnel from a veterinary hospital. Antibiotic sensitivity test (AST), minimum inhibitory concentration (MIC) test, and PCR amplifications of nucA and mecA gene were performed. Molecular characterization of the isolates was conducted using multilocus sequence typing (MLST), staphylococcal protein A gene (spa) typing, and pulsed-field gel electrophoresis (PFGE). Results from MLST show the presence of the pandemic and widespread MRSA clones, ST5 and ST59. Spa gene typing revealed spa type t267 which has a wide geographical distribution. A new spa type, t5697 was found in this study. Fingerprint analysis by using PFGE show heterogeneity of the isolates. These findings affirm the importance of MRSA in veterinary settings and underscore the need for further extensive research to devise contextual control and prevention strategies.
    Matched MeSH terms: Molecular Epidemiology*
  10. Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, et al.
    Vet Microbiol, 2019 Oct;237:108408.
    PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408
    Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
    Matched MeSH terms: Molecular Epidemiology
  11. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Molecular Epidemiology
  12. Al-Areeqi MA, Sady H, Al-Mekhlafi HM, Anuar TS, Al-Adhroey AH, Atroosh WM, et al.
    Trop Med Int Health, 2017 04;22(4):493-504.
    PMID: 28151567 DOI: 10.1111/tmi.12848
    OBJECTIVES: To investigate the molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections among rural communities in Yemen.

    METHODS: In a community-based study, faecal samples were collected from 605 participants and examined by wet mount, formalin-ether sedimentation, trichrome staining and nested multiplex PCR techniques. Demographic, socio-economic and environmental information was collected using a pre-tested questionnaire.

    RESULTS: Overall, 324 (53.6%) of the samples were positive for Entamoeba cysts and/or trophozoites by microscopic examination. Molecular analysis revealed that 20.2%, 15.7% and 18.2% of the samples were positive for E. histolytica, E. dispar and E. moshkovskii, respectively. Multivariate analysis showed different sets of species-specific risk factors among these communities. Educational level was identified as the significant risk factor for E. histolytica; age and gender were the significant risk factors for E. moshkovskii; and sources of drinking water and consumption of unwashed vegetables were the significant risk factors for E. dispar. Moreover, living in coastal/foothill areas and presence of other infected family members were risk factors for both E. histolytica and E. moshkovskii infections.

    CONCLUSION: The study reveals that Entamoeba spp. infection is highly prevalent among rural communities in Yemen, with E. histolytica, E. dispar and E. moshkovskii differentiated for the first time. Identifying and treating infected family members, providing health education pertinent to good personal and food hygiene practices and providing clean drinking water should be considered in developing a strategy to control intestinal parasitic infections in these communities, particularly in the coastal/foothill areas of the country.

    Matched MeSH terms: Molecular Epidemiology
  13. Nor'e SS, Sam IC, Mohamad Fakri EF, Hooi PS, Nathan AM, de Bruyne JA, et al.
    Trop Biomed, 2014 Sep;31(3):562-6.
    PMID: 25382484 MyJurnal
    Human metapneumovirus (HMPV) is a recently discovered cause of viral respiratory infections. We describe clinical and molecular epidemiology of HMPV cases diagnosed in children with respiratory infection at University of Malaya Medical Centre, Kuala Lumpur, Malaysia. The prevalence rate of HMPV between 2010 and 2012 was 1.1%, and HMPV contributed 6.5% of confirmed viral respiratory infections. The HMPV patients had a median age of 1.6 years, and a median hospital admission of 4 days. The most common clinical presentations were fever, rhinitis, pneumonia, vomiting/diarrhoea, and bronchiolitis. Based on the partial sequences of F fusion gene from 26 HMPV strains, 14 (54%) were subgenotype A2b, which was predominant in 2010; 11 (42%) were subgenotype B1, which was predominant in 2012; and 1 (4%) was subgenotype A2a. Knowledge of the circulating subgenotypes in Malaysia, and the displacement of predominant subgenotypes within 3 years, is useful data for future vaccine planning.
    Matched MeSH terms: Molecular Epidemiology
  14. Asma I, Sim BL, Brent RD, Johari S, Yvonne Lim AL
    Trop Biomed, 2015 Jun;32(2):310-22.
    PMID: 26691260 MyJurnal
    Cryptosporidiosis is a particular concern in immunocompromised individuals where symptoms may be severe. The aim of this study was to examine the epidemiological and molecular characteristics of Cryptosporidium infections in HIV/AIDS patients in Malaysia in order to identify risk factors and facilitate control measures. A modified Ziehl-Neelsen acid fast staining method was used to test for the presence of Cryptosporidium oocysts in the stools of 346 HIV/AIDS patients in Malaysia. Standard coproscopical methods were used to identify infections with other protozoan or helminths parasites. To identify the species of Cryptosporidium, DNA was extracted and nested-PCR was used to amplify a portion of the SSU rRNA gene. A total of 43 (12.4%) HIV-infected patients were found to be infected with Cryptosporidium spp. Of the 43 Cryptosporidium-positive HIV patients, 10 (23.3%) also harboured other protozoa, and 15 (34.9%) had both protozoa and helminths. The highest rates of cryptosporidiosis were found in adult males of Malay background, intravenous drug users, and those with low CD4 T cell counts (i.e., < 200 cells/mm3). Most were asymptomatic and had concurrent opportunistic infections mainly with Mycobacterium tuberculosis. DNA sequence analysis of 32 Cryptosporidium isolates identified C. parvum (84.3%), C. hominis (6.3%), C. meleagridis (6.3%), and C. felis (3.1%). The results of the present study revealed a high prevalence of Cryptosporidium infection in hospitalized HIV/AIDS patients. The results also confirmed the potential significance of zoonotic transmission of C. parvum in HIV infected patients, as it was the predominant species found in this study. However, these patients were found to be susceptible to a wide range of Cryptosporidium species. Epidemiological and molecular characterization of Cryptosporidium isolates provides clinicians and researchers with further information regarding the origin of the infection, and may enhance treatment and control strategies.
    Matched MeSH terms: Molecular Epidemiology
  15. Chan YF, Wee KL, Chiam CW, Khor CS, Chan SY, Amalina W MZ, et al.
    Trop Biomed, 2012 Sep;29(3):451-66.
    PMID: 23018509 MyJurnal
    Three genomic regions, VP4 capsid, VP1 capsid and 3D RNA polymerase of human enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) were sequenced to understand the evolution of these viruses in Malaysia. A total of 42 EV-71 and 36 CV-A16 isolates from 1997- 2008 were sequenced. Despite the presence of many EV-71 subgenotypes worldwide, only subgenotypes B3, B4, B5, C1 and C2 were present in Malaysia. Importation of other subgenotypes such as C3, C4/D and C5 from other countries was infrequent. For CV-A16, the earlier subgenotype B1 was replaced by subgenotypes B2a and the recent B2c. Subgenotype B2a was present throughout the study while B2c only emerged in 2005. No genetic signatures could be attributed to viral virulence suggesting that host factors have a major role in determining the outcome of infection. Only three EV-71 B3 isolates showed non-consistent phylogeny in the 3D RNA polymerase region which indicated occurrence of recombination in EV-71. High genetic diversity was observed in the Malaysian EV-71 but Malaysian CV-A16 showed low genetic diversity in the three genomic regions sequenced. EV-71 showed strong purifying selection, but that occurred to a lesser extent in CV-A16.
    Matched MeSH terms: Molecular Epidemiology
  16. Chua KH, See KH, Thong KL, Puthucheary SD
    Trop Biomed, 2010 Dec;27(3):517-24.
    PMID: 21399594 MyJurnal
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei and endemic in Southeast Asia. One hundred and forty six clinical isolates of B. pseudomallei from different states in Malaysia were obtained and molecular typing was carried out using pulsed-field gel electrophoresis (PFGE). Overall, nine clusters were successfully identified. Burkholderia pseudomallei isolates used in this study were found to be genetically diverse and there were differences in the clusters of isolates from peninsular and east Malaysia. BS9 cluster was the most common cluster and found in all the states while BS2 cluster only existed in a particular state. Based on the PFGE analysis, the distribution of different B. pseudomallei clinical isolates in Malaysia was mapped.
    Matched MeSH terms: Molecular Epidemiology
  17. Choi KS, Kye SJ, Kim JY, To TL, Nguyen DT, Lee YJ, et al.
    Trop Anim Health Prod, 2014 Jan;46(1):271-7.
    PMID: 24061688 DOI: 10.1007/s11250-013-0475-3
    Newcastle disease virus (NDV) causes significant economic losses to the poultry industry in Southeast Asia. In the present study, 12 field isolates of NDV were recovered from dead village chickens in Vietnam between 2007 and 2012, and were characterized. All the field isolates were classified as velogenic. Based on the sequence analysis of the F variable region, two distinct genetic groups (Vietnam genetic groups G1 and G2) were recognized. Phylogenetic analysis revealed that all the 12 field isolates fell into the class II genotype VII cluster. Ten of the field isolates, classified as Vietnam genetic group G1, were closely related to VIIh viruses that had been isolated from Indonesia, Malaysia, and Cambodia since the mid-2000s, while the other two field isolates, of Vietnam genetic group G2, clustered with VIId viruses, which were predominantly circulating in China and Far East Asia. Our results indicate that genotype VII viruses, especially VIIh viruses, are predominantly responsible for the recent epizootic of the disease in Vietnam.
    Matched MeSH terms: Molecular Epidemiology
  18. Teh CSJ, Yap PSX, Zulkefli NJ, Subramaniam P, Sit PS, Kong ZX, et al.
    Transbound Emerg Dis, 2021 Jan 27.
    PMID: 33506647 DOI: 10.1111/tbed.14005
    Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multi-locus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic meliodosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains were resolved into 12 STs and the majority were affiliated with ST46 (n=11) and ST1342 (n=7). Concomitantly, ST46 was the most prevalent ST in Malaysia which first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localised evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes of B. pseudomallei.
    Matched MeSH terms: Molecular Epidemiology
  19. Sivadas A, Salleh MZ, Teh LK, Scaria V
    Pharmacogenomics J, 2017 10;17(5):461-470.
    PMID: 27241059 DOI: 10.1038/tpj.2016.39
    Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
    Matched MeSH terms: Molecular Epidemiology/methods*
  20. Tan SC
    J Gene Med, 2018 04;20(4):e3010.
    PMID: 29424105 DOI: 10.1002/jgm.3010
    Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
    Matched MeSH terms: Molecular Epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links