Displaying all 15 publications

Abstract:
Sort:
  1. Arham AF, Hasim NA, Mokhtar MI, Zainal N, Rusly NS, Amin L, et al.
    J Bioeth Inq, 2022 Dec;19(4):587-598.
    PMID: 36350531 DOI: 10.1007/s11673-022-10216-5
    The release of over 6,000 genetically modified mosquitoes (GMM) into uninhabited Malaysian forests in 2010 was a frantic step on the part of the Malaysian government to combat the spread of dengue fever. The field trial was designed to control and reduce the dengue vector by producing offspring that die in the early developmental stage, thus decreasing the local Aedes aegypti population below the dengue transmission threshold. However, the GMM trials were discontinued in Malaysia despite being technologically feasible. The lack of systematic studies in terms of cost-benefit analysis, questionable research efficacy and safety-related concerns might have contributed to the termination of the field trial. Hence, this research aims to evaluate the feasibility of GMM release in Malaysia by using a holistic approach based on an Islamic ethical-legal assessment under the maslahah-mafsadah (benefit-risk) concept. Three main strategies based on the maslahah-mafsadah concept approach have been applied: 1) an evidence-based approach, 2) an impact-based approach and, 3) a priority approach. The analysis concluded that GMM could be categorised as zanniyyah (probable). GMM is a promising alternative for dengue control, but many issues must be addressed before its widespread adoption.
    Matched MeSH terms: Mosquito Vectors/genetics
  2. Azlan A, Halim MA, Mohamad F, Azzam G
    Insect Sci, 2021 Aug;28(4):917-928.
    PMID: 32621332 DOI: 10.1111/1744-7917.12847
    The Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such as development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4763 novel lncRNA transcripts were identified, of which 3591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.
    Matched MeSH terms: Mosquito Vectors/genetics
  3. Kayode FI, Taiwo IE, Adeogun AO, Olalekan O, Chimdalu IP, Olayilola OI, et al.
    Afr Health Sci, 2023 Mar;23(1):255-261.
    PMID: 37545927 DOI: 10.4314/ahs.v23i1.27
    OBJECTIVE: We evaluated the susceptibility status of Anopheles gambiae in two communities of Ikorodu, Lagos, Nigeria to DDT, deltamethrin, lambda cyhalothrin and bendiocarb.

    METHODS: Anopheles immature stages were collected from their habitats in the surveyed community and allowed to emerge before exposure adult females to discriminating doses of WHO insecticides including DDT, deltamethrin, lambda cyhalothrin, bendiocarb and malathion. PBO synergistic bioassay was conducted for insecticides where the mosquito samples showed resistance. PCR assay was used for the detection of kdr mutation in the mosquitoes.

    RESULTS: Resistance to DDT (40% and 86%) and lambda cyhalothrin (75% and 84%) in Oke-Ota and Majidun respectively. Suspected resistance to deltamethrin (94.9%) and bendiocarb (93.5%) was recorded in Oke-Ota community and the mosquitoes were susceptible to malathion in both communities. KDR mutation (L1014F) from resistance samples from both locations though with a low frequency that significantly departs from Hardy-Weinberg's probability (P> 0.01). PBO synergized bioassay was able to increase knockdown, percentage mortality and restore full susceptibility to deltamethrin and bendiocarb.

    CONCLUSION: Results from this study indicates that the metabolic resistance mechanism is highly implicated in the resistance to different classes of insecticide in Ikorodu and this should be taken into consideration when implementing vector control activities in this area.

    Matched MeSH terms: Mosquito Vectors/genetics
  4. Rathod L, Mishra S, Samuel S, Yadav K, Sharma G, Singh S, et al.
    Trop Biomed, 2024 Jun 01;41(2):209-213.
    PMID: 39154275 DOI: 10.47665/tb.41.2.012
    Monitoring mosquito host choice to identify high-risk groups for different vector-borne diseases is important to devise vector control strategies and disease management. The present study was conducted to develop and validate a PCR-based method to identify human sex in blood-fed Aedes aegypti mosquitoes. Several human genes present in both the X and Y chromosomes were screened and diagnostic PCR primers were successfully designed and amplified for the human STS gene. The limit of detection of this PCR assay was carried out on Ae. aegypti fed with human blood up to 5 days (120 hours) post blood-meal under laboratory condition. The efficiency of this PCR assay was evaluated in field-collected Ae. aegypti mosquitoes and compared with other existing methods. The developed PCR primers can successfully amplify and distinguish human sex in mosquitoes up to 72 hours after a blood meal, with an amplified product of 627bp and 298bp for male (XY) and 627bp for female (XX) blood-fed mosquitoes. Further, validation of this assay in field-collected Ae. aegypti mosquitoes revealed that this assay could detect human sex in mosquito blood meal substantially more efficiently (c2 = 4.5, p = 0.034) than other PCR based assay. The newly developed PCR assay highly specific to human DNA and can distinguish male and female DNA for up to 72 hours. This assay can be is used for identifying highrisk groups and extended to other medically important hematophagous insects to assess their role in disease transmission and epidemic preparedness.
    Matched MeSH terms: Mosquito Vectors/genetics
  5. Adeogun AO, Brooke BD, Olayanju DR, Adegbehingbe K, Oyeniyi TA, Olakiigbe AK, et al.
    Trop Biomed, 2019 Sep 01;36(3):587-593.
    PMID: 33597480
    The assortment of paracentric chromosomal inversion 2La is associated with the maintenance of dieldrin resistance in laboratory colonies of the malaria vector Anopheles gambiae. This association has not been tested in field populations. The aim of this study was to test the association between inversion 2La and dieldrin resistance in a field population of An. coluzzii in Nigeria. Field collected immature stages of Anopheles were raised to adults and exposed to 4% dieldrin according to WHO criteria. Knockdown was recorded at 10 min intervals for 1 hour and final mortality was recorded 24 hours post exposure. Species and inversion 2La diagnostic PCR assays were conducted on the resistant and susceptible mosquitoes. The mosquitoes were highly resistant to 4% dieldrin (17.1% knock down and 25.7% final mortality; KDT50 and KDT95 calculated as 170 and 1, 514 minutes respectively). Frequencies of 2La in both the resistant and susceptible cohorts assorted within HardyWeinberg estimates (χ2=1.32, p=0.8 for dead/susceptible mosquitoes and χ2=2.54, p=0.5 for survivors or resistant mosquitoes). However, a higher number of heterozygous mosquitoes were observed in the resistant cohort compared to the susceptible, with significant variation in karyotype frequencies (χ2=11.08, DF=2, p<0.05) and a significantly higher frequency of the 2La inversion arrangement in the resistant cohort (Pearson's χ2 = 4.58, p = 0.03.). These data are the first to associate paracentric chromosome inversion 2La and dieldrin resistance in field population of An. coluzzii. Dieldrin resistance shows a weak but significant association with 2La whose assortment is affected by positive heterosis. Variation in the assortment of 2La inversion arrangements between resistant and susceptible cohorts of this An. coluzzii population suggests that dieldrin resistance is at least partially linked to inversion 2La which may explain the persistence of dieldrin resistance in this population despite a significant absence of selection for resistance to this insecticide.
    Matched MeSH terms: Mosquito Vectors/genetics
  6. Low VL, Wong ML, Liew JWK, Pramasivan S, Jeyaprakasam NK, Vythilingam I
    Acta Trop, 2020 Jan;201:105207.
    PMID: 31586449 DOI: 10.1016/j.actatropica.2019.105207
    A gynandromorph of Culex sitiens Wiedemann (Diptera: Culicidae) was attracted to a human during a mosquito surveillance programme conducted in Kuala Lipis, Pahang, Malaysia on July 20, 2019. Gynandromorphism was observed in antennae, maxillary palps, legs and wings of the specimen, with distinct male characters on the left and female characters on the right, though the left maxillary palp is slightly shorter than the proboscis of a typical male. The abdomen, however, displays well-developed male genitalia. This study represents the first report of oblique gynandromorphism in Cx. sitiens, one of the vectors of Japanese encephalitis in Asia.
    Matched MeSH terms: Mosquito Vectors/genetics*
  7. Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA
    Mol Ecol Resour, 2019 Sep;19(5):1254-1264.
    PMID: 31125998 DOI: 10.1111/1755-0998.13043
    Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent-offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent-offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome-wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close-set, high-rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent-offspring dispersal and estimated neighbourhood area (129 m), median parent-offspring dispersal distance (75 m) and oviposition dispersal radius within a gonotrophic cycle (36 m). We also analysed genetic structure using distance-based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance.
    Matched MeSH terms: Mosquito Vectors/genetics*
  8. Manin BO, Drakeley CJ, Chua TH
    PLoS One, 2018;13(8):e0202905.
    PMID: 30138386 DOI: 10.1371/journal.pone.0202905
    Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
    Matched MeSH terms: Mosquito Vectors/genetics*
  9. Amelia-Yap ZH, Sofian-Azirun M, Chen CD, Suana IW, Lau KW, Elia-Amira NMR, et al.
    J Med Entomol, 2019 04 16;56(3):811-816.
    PMID: 30715464 DOI: 10.1093/jme/tjz007
    The emergence of pyrethroid resistance in Aedes aegypti (L.) has limited the success of vector control. Early detection of resistance could assist authorities in deciding well-suited control strategies to minimize operational failures of Ae. aegypti control. Herein, biochemical analysis was performed to investigate the mechanisms involved in pyrethroid resistance in nine populations of Indonesian Ae. aegypti. Enzymes of adult Ae. aegypti such as esterases (ESTs), glutathione-S-transferases (GSTs), and mixed-function oxidases (MFOs) were characterized. Elevated MFO activity was correlated with resistance phenotype, indicating the role of this enzyme in contributing to pyrethroid resistance. No significant correlations were shown between pyrethroid resistance phenotype and α-ESTs, suggesting that marginally exceeded enzyme levels relative to the reference strain in some pyrethroid-susceptible populations were causative factor for insecticide resistance in other groups of insecticides. However, significant correlation was demonstrated between β-ESTs and pyrethroid resistance phenotype. The lowest enzyme levels in GSTs indicated that this enzyme was not predominant in causing pyrethroid resistance, despite the presence of significant correlations. Because metabolic detoxification fails to comprehensively explain the pyrethroid resistance in some Indonesian Ae. aegypti, additional mechanisms such as altered target sites in voltage-gated sodium channel may also contribute to the high pyrethroid resistance in Ae. aegypti.
    Matched MeSH terms: Mosquito Vectors/genetics
  10. Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF, Popov VL, et al.
    Am J Trop Med Hyg, 2018 02;98(2):410-419.
    PMID: 29016330 DOI: 10.4269/ajtmh.17-0350
    Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.
    Matched MeSH terms: Mosquito Vectors/genetics
  11. Ismail NA, Adilah-Amrannudin N, Hamsidi M, Ismail R, Dom NC, Ahmad AH, et al.
    J Med Entomol, 2017 11 07;54(6):1573-1581.
    PMID: 28981849 DOI: 10.1093/jme/tjx126
    The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally.
    Matched MeSH terms: Mosquito Vectors/genetics
  12. Leong CS, Vythilingam I, Liew JW, Wong ML, Wan-Yusoff WS, Lau YL
    Parasit Vectors, 2019 May 16;12(1):236.
    PMID: 31097010 DOI: 10.1186/s13071-019-3472-1
    BACKGROUND: Dengue is a serious public health problem worldwide, including in Selangor, Malaysia. Being an important vector of dengue virus, Aedes aegypti are subjected to control measures which rely heavily on the usage of insecticides. Evidently, insecticide resistance in Ae. aegypti, which arise from several different point mutations within the voltage-gated sodium channel genes, has been documented in many countries. Thus, this robust study was conducted in all nine districts of Selangor to understand the mechanisms of resistance to various insecticides in Ae. aegypti. Mosquitoes were collected from dengue epidemic and non-dengue outbreak areas in Selangor.

    METHODS: Using the Center for Disease Control and Prevention (CDC) bottle assays, the insecticide resistance status of nine different Ae. aegypti strains from Selangor was accessed. Synergism tests and biochemical assays were conducted to further understand the metabolic mechanisms of insecticide resistance. Polymerase chain reaction (PCR) amplification and sequencing of the IIP-IIS6 as well as IIIS4-IIIS6 regions of the sodium channel gene were performed to enable comparisons between susceptible and resistant mosquito strains. Additionally, genomic DNA was used for allele-specific PCR (AS-PCR) genotyping of the gene to detect the presence of F1534C, V1016G and S989P mutations.

    RESULTS: Adult female Ae. aegypti from various locations were susceptible to malathion and propoxur. However, they exhibited different levels of resistance against dichlorodiphenyltrichloroethane (DDT) and pyrethroids. The results of synergism tests and biochemical assays indicated that the mixed functions of oxidases and glutathione S-transferases contributed to the DDT and pyrethroid resistance observed in the present study. Besides detecting three single kdr mutations, namely F1534C, V1016G and S989P, co-occurrence of homozygous V1016G/S989P (double allele) and F1534C/V1016G/S989P (triple allele) mutations were also found in Ae. aegypti. As per the results, the three kdr mutations had positive correlations with the expressions of resistance to DDT and pyrethroids.

    CONCLUSIONS: In view of the above outcomes, it is important to seek new tools for vector management instead of merely relying on insecticides. If the latter must be used, regular monitoring of insecticide resistance should also be carried out at all dengue epidemic areas. Since the eggs of Ae. aegypti can be easily transferred from one location to another, it is probable that insecticide-resistant Ae. aegypti can be found at non-dengue outbreak sites as well.

    Matched MeSH terms: Mosquito Vectors/genetics*
  13. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Mosquito Vectors/genetics
  14. Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al.
    G3 (Bethesda), 2017 06 07;7(6):1819-1832.
    PMID: 28428243 DOI: 10.1534/g3.117.040147
    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
    Matched MeSH terms: Mosquito Vectors/genetics
  15. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
    Matched MeSH terms: Mosquito Vectors/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links