Displaying all 7 publications

Abstract:
Sort:
  1. Vedam V, Ganapathy S
    Hong Kong Med J, 2020 08;26(4):354.
    PMID: 32807744 DOI: 10.12809/hkmj208479
    Matched MeSH terms: Pediatric Obesity/microbiology*
  2. Sarbini SR, Kolida S, Gibson GR, Rastall RA
    Br J Nutr, 2013 Jun;109(11):1980-9.
    PMID: 23116939 DOI: 10.1017/S0007114512004205
    The fermentation selectivity of a commercial source of a-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. a-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both a-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of a-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
    Matched MeSH terms: Obesity/microbiology*
  3. Tan HJ, Goh KL
    J Dig Dis, 2012 Jul;13(7):342-9.
    PMID: 22713083 DOI: 10.1111/j.1751-2980.2012.00599.x
    Helicobacter pylori (H. pylori) infection is reported to be associated with many extragastrointestinal manifestations, such as hematological diseases [idiopathic thrombocytopenic purpura (ITP) and unexplained iron deficiency anemia (IDA)], cardiovascular diseases (ischemic heart diseases), neurological disorders (stroke, Parkinson's disease, Alzheimer's disease), obesity and skin disorders. Among these, the best evidence so far is in ITP and unexplained IDA, with high-quality studies showing the improvement of IDA and ITP after H. pylori eradication. The evidence of its association with coronary artery disease is weak and many of the results may be erroneous. The role of H. pylori infection in affecting serum leptin and ghrelin levels has attracted a lot of attention recently and available data to date have been conflicting. There have also been many uncontrolled, small sample studies suggesting an association between H. pylori infection and neurological disorders or chronic urticaria. However, more studies are required to clarify such proposed causal links.
    Matched MeSH terms: Obesity/microbiology
  4. Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, et al.
    Food Funct, 2023 Mar 20;14(6):2870-2880.
    PMID: 36883533 DOI: 10.1039/d2fo02524h
    Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
    Matched MeSH terms: Obesity/microbiology
  5. Koh JC, Loo WM, Goh KL, Sugano K, Chan WK, Chiu WY, et al.
    J Gastroenterol Hepatol, 2016 Aug;31(8):1405-13.
    PMID: 27010240 DOI: 10.1111/jgh.13385
    The incidence of obesity is increasing in Asia, with implications on gastrointestinal (GI) and liver diseases. The Gut and Obesity in Asia Workgroup comprises regional experts with the aim of studying relationship between obesity and the GI and liver diseases in Asia. Through literature review and the modified Delphi process, consensus statements examining the impact of obesity on esophageal, gastric, pancreatic, colorectal, and liver diseases, exploring relationship between gut microbiome and obesity, and assessing obesity therapies have been produced by the Gut and Obesity in Asia Workgroup. Sixteen experts participated with 9/15 statements having strong consensus (>80% agreement). The prevalence of obesity in Asia is increasing (100% percentage agreement in brackets), and this increased prevalence of obesity will result in a greater burden of obesity-related GI and liver diseases (93.8%). There was consensus that obesity increases the risk of gastric cancer (75%) and colorectal neoplasia (87.5%). Obesity was also associated with Barrett's esophagus and esophageal adenocarcinoma (66.7%) and pancreatic cancer (66.7%) in Asia. The prevalence of non-alcoholic fatty liver disease (NAFLD) in Asia is on the rise (100%), and the risk of NAFLD in Asia (100%) is increased by obesity. Obesity is a risk factor for the development of hepatocellular carcinoma (93.8%). Regarding therapy, it was agreed that bariatric surgery was an effective treatment modality for obesity (93.8%) but there was less agreement on its benefit for NAFLD (62.5%). These experts' consensus on obesity and GI diseases in Asia forms the basis for further research, and its translation into addressing this emerging issue.
    Matched MeSH terms: Obesity/microbiology
  6. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Obesity/microbiology*
  7. Karimi G, Jamaluddin R, Mohtarrudin N, Ahmad Z, Khazaai H, Parvaneh M
    Nutr Metab Cardiovasc Dis, 2017 Oct;27(10):910-918.
    PMID: 28821417 DOI: 10.1016/j.numecd.2017.06.020
    BACKGROUND AND AIM: Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats.

    METHODS AND RESULTS: A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups.

    CONCLUSIONS: B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species.

    Matched MeSH terms: Obesity/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links