Displaying all 2 publications

Abstract:
Sort:
  1. Majid NA, Phang IC, Darnis DS
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22827-22838.
    PMID: 28150147 DOI: 10.1007/s11356-017-8484-9
    Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
    Matched MeSH terms: Pelargonium/chemistry*
  2. Tang LI, Ling AP, Koh RY, Chye SM, Voon KG
    PMID: 22244370 DOI: 10.1186/1472-6882-12-3
    Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.
    Matched MeSH terms: Pelargonium/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links