A study on liquid state bioconversion of sewage treatment plant (STP) sludge was assisted to evaluate the performance of batch fermenter compared to shake flask in a laboratory. Bioconversion of STP sludge was highly influenced by the mixed fungal culture of Penicillium corylophilum and Aspergillus niger after 4 days of treatment. The results showed that about 24.9 g kg(-1) dry sludge cake (DSC) was produced with enrichment of fungal biomass protein in fermenter while 20.1 g kg(-1) in shake flask after 4 days of fungal treatment. The effective biodegradation of STP sludge was recorded in both fermenter and shake flask experiment compared to control (uninnoculated sample). The results presented in this study revealed that the overall performance of fermenter in terms of sludge cake (biosolids) accumulation and biodegradation of STP sludge was higher than the shake flask.
Bioconversion of higher strength of domestic wastewater biosolids (sludge) (4% w/w of TSS) by mixed fungal culture of Aspergillus niger and Penicillium corylophilum was studied in a laboratory. The effect of potential mixed fungi on domestic wastewater sludge accelerated the liquid state bioconversion (LSB) process. The highest production of dry sludge cake (biosolids) was enriched with fungal biomass to about 85.66 g/kg containing 25.23 g/kg of protein after 8 days of treatment. The results presented in this study revealed that the reduction of chemical oxygen demand (COD), total suspended solid (TSS), and specific resistance to filtration (SRF) of treated sludge were highly influenced by the fungal culture as compared to control (uninnoculated). The maximum removal rates in treated sludge (biosolids) supernatant recorded were 92% of COD and 98.8% of TSS. Lower SRF (1.08 x 10(12) m/kg) was perceived in microbially treated sludge after 6 days of fermentation. The observed parameters were highly influenced after 8 days of treatment. The influence of pH was also studied and presented in the paper.
The bioconversion of domestic wastewater sludge by immobilized mixed culture of filamentous fungi was investigated in a laboratory. The potential mixed culture of Penicillium corylophilum WWZA1003 and Aspergillus niger SCahmA103 was isolated from its local habitats (wastewater and sludge cake) and optimized on the basis of biodegradability and dewaterability of treated sludge. The observed results in this study showed that the sludge treatment was highly influenced by the effect of immobilized mixed fungi using liquid state bioconversion (LSB) process. The maximum production of dry filter cake (DFC) was enriched with fungal biomass to about 20.05 g/kg containing 23.47 g/kg of soluble protein after 4 days of fungal treatment. The reduction of COD, TSS, turbidity (optical density against distilled water, 660 nm), reducing sugar and protein in supernatant and filtration rate of treated sludge were influenced by the fungal mixed culture as compared to control (uninnoculated). After these processes, 99.4% of TSS, 98.05% of turbidity, 76.2% of soluble protein, 98% of reducing sugar and 92.4% of COD in supernatant of treated sludge were removed. Filtration time was decreased tremendously by the microbial treatment after 2 days of incubation. The effect of fungal strain on pH was also studied and presented. Effective bioconversion was observed after 4 days of fungal treatment.
In this review, we present the current information on development and applications of biological control against phytopathogenic organisms as well as mycotoxigenic fungi in Malaysia as part of the integrated pest management (IPM) programs in a collective effort to achieve food security. Although the biological control of phytopathogenic organisms of economically important crops is well established and widely practiced in Malaysia with considerable success, the same cannot be said for mycotoxigenic fungi. This is surprising because the year round hot and humid Malaysian tropical climate is very conducive for the colonization of mycotoxigenic fungi and the potential contamination with mycotoxins. This suggests that less focus has been made on the control of mycotoxigenic species in the genera Aspergillus, Fusarium, and Penicillium in Malaysia, despite the food security and health implications of exposure to the mycotoxins produced by these species. At present, there is limited research in Malaysia related to biological control of the key mycotoxins, especially aflatoxins, Fusarium-related mycotoxins, and ochratoxin A, in key food and feed chains. The expected threats of climate change, its impacts on both plant physiology and the proliferation of mycotoxigenic fungi, and the contamination of food and feed commodities with mycotoxins, including the discovery of masked mycotoxins, will pose significant new global challenges that will impact on mycotoxin management strategies in food and feed crops worldwide. Future research, especially in Malaysia, should urgently focus on these challenges to develop IPM strategies that include biological control for minimizing mycotoxins in economically important food and feed chains for the benefit of ensuring food safety and food security under climate change scenarios.
Matched MeSH terms: Penicillium/growth & development
In recent years, the utilisation of endophytes has emerged as a promising biological treatment technology for the degradation of plastic wastes such as biodegradation of synthetic plastics. This study, therefore, aimed to explore and extensively screen endophytic fungi (from selected plants) for efficient in vitro polyvinyl alcohol (PVA) biodegradation. In total, 76 endophytic fungi were isolated and cultivated on a PVA screening agar medium. Among these fungi, 10 isolates showed potential and were subsequently identified based on phenotypical characteristics, ITS ribosomal gene sequences, and phylogenetic analyses. Four strains exhibited a maximum level of PVA-degradation in the liquid medium when cultivated for 10 days at 28 °C and 150 rpm. These strains showed varied PVA removal rates of 81% (Penicillium brevicompactum OVR-5), 67% (Talaromyces verruculosus PRL-2), 52% (P. polonicum BJL-9), and 41% (Aspergillus tubingensis BJR-6) respectively. The most promising PVA biodegradation isolate 'OVR-5', with an optimal pH at 7.0 and optimal temperature at 30 °C, produced lipase, manganese peroxidase, and laccase enzymes. Based on analyses of its metabolic intermediates, as identified with GC-MS, we proposed the potential PVA degradation pathway of OVR-5. Biodegradation results were confirmed through scanning electron microscopy and Fourier transform infrared spectroscopy. This study provides the first report on an endophytic P. brevicompactum strain (associated with Orychophragmus violaceus) that has a great ability for PVA degradation providing more insight on potential fungus-based applications in plastic waste degradation.
This report shows the partitioning and purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031) by solid-state fermentation (SSF). In the present analysis, some of the important parameters such as PEG concentration, PEG molecular mass, salt concentration and buffer concentration were optimised through the response surface methodology (RSM). The optimum aqueous two-phase systems (ATPS) environment consisted of 13.8% (w/w) phosphate buffer, 9.2% (w/w) PEG-3000 and 3.3% (w/w) NaCl at 25°C. The RSM approach was proved to be the most suitable methodology for the recovery of desired enzymes. In this method, the enzyme partitioned into the top phase of the PEG-buffer-NaCl ATPS. Under this experimental environment, the purification factor was found to be 33.9, the partition coefficient was 4.0 and the yield was found to be 84.0% of lipase. Moreover, the experimental and predicted results were in considerable agreement, which established the reliability and validity of the proposed model. The ATPS methodology is proven to be effective for the primary recovery of lipase at a low cost with a large loading capacity and possibility of linear scale up. In addition to using the existing methodologies for improving enzyme production, the use of statistical optimisation of the constituents of phases through RSM continues to be the basic and practical method.
Matched MeSH terms: Penicillium/growth & development
The objectives of this study were to determine the efficacy of metabolites of a Streptomyces strain AS1 on (a) spore germination, (b) mycelial growth, (c) control of mycotoxins produced by Penicillium verrucosum (ochratoxin A, OTA), Fusarium verticillioides (fumonisins, FUMs) and Aspergillus fumigatus (gliotoxin) and (d) identify the predominant metabolites involved in control. Initial screening showed that the Streptomyces AS1 strain was able to inhibit the mycelial growth of the three species at a distance, due to the release of secondary metabolites. A macroscopic screening system showed that the overall Index of Dominance against all three toxigenic fungi was inhibition at a distance. Subsequent studies showed that the metabolite mixture from the Streptomyces AS1 strain was very effective at inhibiting conidial germination of P. verrucosum, but less so against conidia of A. fumigatus and F. verticillioides. The efficacy was confirmed in studies on a conducive semi-solid YES medium in BioScreen C assays. Using the BioScreen C and the criteria of Time to Detection (TTD) at an OD = 0.1 showed good efficacy against P. verrucosum when treated with the Streptomyces AS1 extract at 0.95 and 0.99 water activity (aw) when compared to the other two species tested, indicating good efficacy. The effective dose for 50% control of growth (ED50) at 0.95 and 0.99 aw were approx. 0.005 ng/ml and 0.15 μg/ml, respectively, with the minimum inhibitory concentration (MIC) at both aw levels requiring > 40 μg/ml. In addition, OTA production was completely inhibited by 2.5 μg/ml AS1 extract at both aw levels in the in vitro assays. Ten metabolites were identified with four of these being predominant in concentrations > 2 μg/g dry weight biomass. These were identified as valinomycin, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val) and brevianamide F.