Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Abdullahi S, Ismail AF, Samat S
    Radiat Prot Dosimetry, 2019 Dec 31;186(4):520-523.
    PMID: 31034551 DOI: 10.1093/rpd/ncz125
    The activity concentrations of 226Ra, 232Th and 40K radionuclides from common building materials used by Malaysian people for construction purposes were studied using High-Purity Germanium (HPGe) detector. The measured activity concentrations of the aforementioned radionuclides range from 10 ± 1 Bq kg-1 (limestone) to 155 ± 61 Bq kg-1 (feldspar), 12 ± 3 Bq kg-1 (limestone) to 274 ± 8 Bq kg-1 (kaolin) and 62 ± 19 Bq kg-1 (limestone) to 1114 ± 20 Bq kg-1 (pottery stone) for 226Ra, 232Th and 40K, respectively. The measured activity concentrations of the natural radionuclides reported herein were found to be in accordance with other previous studies. In general, the activity concentration of the natural radionuclides revealed that all the determined values were below the recommended limit.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  2. Al Mutairi AMM, Kabir NA
    Radiat Prot Dosimetry, 2020 Jun 12;188(1):47-55.
    PMID: 31711202 DOI: 10.1093/rpd/ncz256
    Tapioca and sweet potato are the fourth and fifth most consumed crops in Malaysia. The activity concentrations of natural radionuclides in these vegetables were assessed from two regions in Malaysia (Kedah and Penang) along with soil samples using gamma ray spectroscopy. The transfer factors of 226Ra, 232Th and 40K from soil to vegetables were calculated, and a dose assessment was performed. The activity concentrations of 226Ra, 232Th and 40K in soil samples did not show a significant variation with the regions investigated, and the average values obtained, in Bq/kg, (±SD) were as follows: 80 ± 41, 56 ± 12, 516 ± 119, respectively. The respective average activity concentrations in vegetables were as follows, in Bq/kg: (±SD) 2.0 ± 0.5, 6 ± 2, 153 ± 49. The corresponding transfer factors were calculated to be 0.03, 0.11 and 0.31 for 226Ra, 232Th and 40K, respectively. The average annual effective doses due to the exposure from soil and ingestion of vegetables were found to lie within the worldwide ranges.
    Matched MeSH terms: Potassium Radioisotopes
  3. Almayahi BA, Tajuddin AA, Jaafar MS
    Appl Radiat Isot, 2012 Nov;70(11):2652-60.
    PMID: 22982603 DOI: 10.1016/j.apradiso.2012.07.021
    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)<1 are suitable for use in agriculture and as building materials. Also, in this study H(in) and H(ex)<1 for water samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  4. Alnour IA, Wagiran H, Ibrahim N, Hamzah S, Elias MS, Laili Z, et al.
    Radiat Prot Dosimetry, 2014 Jan;158(2):201-7.
    PMID: 23965286 DOI: 10.1093/rpd/nct206
    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  5. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abukashabeh A
    Isotopes Environ Health Stud, 2019 May;55(2):211-226.
    PMID: 30789050 DOI: 10.1080/10256016.2019.1581776
    An extensive study was conducted to determine the activity concentrations of natural and artificial radionuclides 226Ra, 232Th, 40K, and 137Cs in soil samples of each governate of Jordan. A total of 370 samples have been measured using a high-purity germanium detector. The activity concentration for 226Ra, 232Th, 40K, and 137Cs has mean values of 42 ± 3, 23 ± 3, 309 ± 21, and 3.7 ± 0.9 Bq kg-1, respectively. The highest mean activity concentration for 226Ra was found to be 138 ± 4 Bq kg-1 in the Alkarak governate. In the Ajloun and Jarash governates, the highest mean activity concentration was 35 ± 3 Bq kg-1 for 232Th, and 14.2 ± 1.9 Bq kg-1 for 137Cs, respectively. Geological influence on the activity concentrations was investigated using the one-way analysis of variance (ANOVA) and independent samples. The ANOVA results indicate that there are strong significant differences between the activity concentrations of 232Th, 40K, and 137Cs based on geological formations the radionuclides occur. The main contribution to gamma dose rate was due to 226Ra activity concentration. Radium equivalent and external hazard index are associated with a mean value of 98 Bq kg-1, and 0.266, respectively.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  6. Amin YM, Mahat RH, Nor RM, Khandaker MU, Takleef GH, Bradley DA
    Radiat Prot Dosimetry, 2013 Oct;156(4):475-80.
    PMID: 23584496 DOI: 10.1093/rpd/nct097
    The presence of natural radioactivity and (137)Cs has been investigated in fresh media obtained from South China Sea locations off the coast of peninsular Malaysia. The media include seafood, sea water and sediment. The samples were collected some weeks prior to the devastating 2011 Tōhoku earthquake and associated tsunami, the occurrence of which precipitated the Fukushima incident. All samples showed the presence of naturally occurring (226)Ra, (228)Ra and primordial (40)K, all at typically prevailing levels. The concentrations of natural radioactivity in molluscs were found to be greater than that of other marine life studied herein, the total activity ranging from 337 to 393 Bq kg(-1) dry weight. The total activity in sea water ranged from 15 to 88 Bq l(-1). Sediment samples obtained at deep sea locations more than 20 km offshore further revealed the presence of (137)Cs. The activity of (137)Cs varied from ND to 0.5 Bq kg(-1) dry weight, the activity increasing with offshore distance and depth. The activity concentrations presented herein should be considered useful in assessing the impact of any future radiological contamination to the marine environment.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  7. Amrani D, Tahtat M
    Appl Radiat Isot, 2001 Apr;54(4):687-9.
    PMID: 11225705
    Samples of natural and manufactured building materials collected from Algiers have been analysed for 226Ra, 232Th and 40K using a high-resolution HPGe gamma-spectrometry system. The specific concentrations for 226Ra, 232Th and 40K, from the selected building materials, ranged from (12-65 Bq kg(-1)), (7-51 B qkg(-1)) and (36-675 Bq kg(-1)), respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. Radium-equivalent activities were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. All building materials showed Ra(eq) activities lower than the limit set in the OECD report (370 Bq kg(-1)), equivalent to external gamma-dose of 1.5 mSv yr(-1).
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  8. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YB, et al.
    PLoS One, 2015;10(10):e0140667.
    PMID: 26473957 DOI: 10.1371/journal.pone.0140667
    The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  9. Asaduzzaman Kh, Khandaker MU, Amin YM, Bradley DA, Mahat RH, Nor RM
    J Environ Radioact, 2014 Sep;135:120-7.
    PMID: 24814722 DOI: 10.1016/j.jenvrad.2014.04.009
    Soil-to-plant transfer factors (TFs) are of fundamental importance in assessing the environmental impact due to the presence of radioactivity in soil and agricultural crops. Tapioca and sweet potato, both root crops, are popular foodstuffs for a significant fraction of the Malaysian population, and result in intake of radionuclides. For the natural field conditions experienced in production of these foodstuffs, TFs and the annual effective dose were evaluated for the natural radionuclides (226)Ra, (232)Th, (40)K, and for the anthropogenic radionuclide (88)Y, the latter being a component of fallout. An experimental tapioca field was developed for study of the time dependence of plant uptake. For soil samples from all study locations other than the experimental field, it has been shown that these contain the artificial radionuclide (88)Y, although the uptake of (88)Y has only been observed in the roots of the plant Manihot esculenta (from which tapioca is derived) grown in mining soil. The estimated TFs for (226)Ra and (232)Th for tapioca and sweet potato are very much higher than that reported by the IAEA. For all study areas, the annual effective dose from ingestion of tapioca and sweet potato are estimated to be lower than the world average (290 μSv y(-1)).
    Matched MeSH terms: Potassium Radioisotopes/metabolism
  10. Aziz Saleh M, Termizi Ramli A, Alajerami Y, Damoom M, Sadiq Aliyu A
    Isotopes Environ Health Stud, 2014;50(1):103-13.
    PMID: 24279290 DOI: 10.1080/10256016.2013.821469
    The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h(-1), 0.891 mSv y(-1) and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of (232)Th, (226)Ra and (40)K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg(-1) with a mean value of 137±5 Bq kg(-1) for (232)Th, from 21±2 to 268±9 Bq kg(-1)with a mean value of 78±3 Bq kg(-1) for (226)Ra and from 23±9 to 1268±58 Bq kg(-1) with a mean value of 207±13 Bq kg(-1) for (40)K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg(-1) and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10(-4) Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  11. Bahari I, Mohsen N, Abdullah P
    J Environ Radioact, 2007;95(2-3):161-70.
    PMID: 17428589
    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  12. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  13. Chong CS, Ahmad GU
    Health Phys, 1982 Aug;43(2):272-3.
    PMID: 7129886
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  14. Chong CS, Chong HY, Fun HK, Leong LS
    Health Phys, 1985 Nov;49(5):1008-10.
    PMID: 4066326
    Matched MeSH terms: Potassium Radioisotopes/analysis
  15. Dougherty G
    Health Phys, 1989 Jul;57(1):187-90.
    PMID: 2745081
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  16. Dougherty G, Ng CE
    Health Phys, 1982 Dec;43(6):915-9.
    PMID: 7152953
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  17. Hanfi MYM, Masoud MS, Sayyed MI, Khandaker MU, Faruque MRI, Bradley DA, et al.
    PLoS One, 2021;16(3):e0249329.
    PMID: 33788889 DOI: 10.1371/journal.pone.0249329
    Uranium, perhaps the most strategically important component of heavy minerals, finds particular significance in the nuclear industry. In prospecting trenches, the radioactivity of 238U and 232Th provides a good signature of the presence of heavy minerals. In the work herein, the activity concentrations of several key primordial radionuclides (238U, 232Th, and 40K) were measured in prospecting trenches (each of the latter being of approximately the same geometry and physical situation). All of these are located in the Seila area of the South Eastern desert of Egypt. A recently introduced industry standard, the portable hand-held RS-230 BGO gamma-ray spectrometer (1024 channels) was employed in the study. Based on the measured data, the trenches were classified as either non-regulated (U activity less than 1000 Bq kg-1) or regulated (with 238U activity more than 1000 Bq kg-1). Several radiological hazard parameters were calculated, statistical analysis also being performed to examine correlations between the origins of the radionuclides and their influence on the calculated values. While the radioactivity and hazard parameters exceed United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) guided limits, the mean annual effective doses of 0.49 and 1.4 mSv y-1 in non-regulated and regulated trenches respectively remain well below the International Commission on Radiological Protection (ICRP) recommended 20 mSv/y maximum occupational limit. This investigation reveals that the studied area contains high uranium content, suitable for extraction of U-minerals for use in the nuclear fuel cycle.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  18. Hassan HJ, Hashim S, Abu Hanifah NZH, Ghoshal SK, Sanusi MSM, Binti Suhailin FH, et al.
    PMID: 34769689 DOI: 10.3390/ijerph182111170
    A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)-purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  19. Joel ES, Maxwell O, Adewoyin OO, Olawole OC, Arijaje TE, Embong Z, et al.
    Sci Rep, 2019 03 12;9(1):4219.
    PMID: 30862825 DOI: 10.1038/s41598-019-40884-0
    Natural radioactivity in coastaline area soil of Ado-Odo/Ota has been carried out to ascertain the presence of radionuclides using gamma-ray spectroscopy (HPGe detector). The result showed that U-238, Th-232 and K-40 ranged from 24 ± 7-49 ± 10; 67 ± 6-120 ± 9 and 88 ± 17-139 ± 20 Bqkg-1 respectively. The radium equivalent for the samples ranged from 132.51 to 230.91 Bqkg-1 with mean value of 185.89 Bqkg-1. The mean value for the gamma dose rate for the soil samples was estimated to be 81.32 nGyh-1. The estimated values of annual effective dose equivalent ranged from 0.61 to 1.07 mSv y-1. The estimation of alpha index representative (Iα) ranged from 0.12 to 0.24 with mean value of 0.21 while the gamma representative index ranged between 0.465 and 0.810. The activity utilization index of the soil samples ranged from 1.09 to 1.89 with mean value of 1.53. The radiological implication in the study area has shown that the soil samples with gamma dose rate value of 89.99 nGyh-1, 94.39 nGyh-1, 97.40 nGyh-1 and 101.04 nGyh-1 respectively are higher than the recommended value of 80 nGyh-1 and may pose health implication for long term exposure.
    Matched MeSH terms: Potassium Radioisotopes
  20. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links