Displaying all 3 publications

Abstract:
Sort:
  1. Ibrahim MH, Jaafar HZ
    Molecules, 2011 Jul 20;16(7):6068-81.
    PMID: 21775936 DOI: 10.3390/molecules16076068
    A randomized complete randomized design (RCBD) 3 by 3 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), gluthatione (GSH), oxidized gluthatione (GSSG), soluble carbohydrate and antioxidant activities of the Malaysian medicinal herb Labisia pumila Blume under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. It was found that the treatment effects were solely contributed by interaction of CO₂ levels and secondary metabolites distribution in plant parts, GSH, GSHH and antioxidant activities (peroxyl radicals (ROO), superoxide radicals (O₂), hydrogen peroxide (H₂O₂) and hydroxyl radicals (OH). The records of secondary metabolites, glutahione, oxidized gluthathione and antioxidant activities in a descending manner came from the leaf enriched with 1,200 µmol/mol CO₂ > leaf 800 µmol/mol CO₂ > leaf 400 µmol/mol CO₂ > stem 1,200 µmol/mol CO₂ > stem 800 µmol/mol CO₂ > stem 400 µmol/mol CO₂ > root 1,200 µmol/mol CO₂ > root 800 µmol/mol CO₂ > root 400 µmol/mol CO₂. Correlation analyses revealed strong significant positive coefficients of antioxidant activities with total phenolics, flavonoids, GSH and GSHH indicating that an increase in antioxidative activity of L. pumila under elevated CO₂ might be up-regulated by the increase in production of total phenolics, total flavonoids, GSH, GSHH and soluble sugar. This study implied that the medicinal potential of herbal plant such as L. pumila can be enhanced under elevated CO₂, which had simultaneously improved the antioxidative activity that indicated by the high oxygen radical absorbance activity against ROO, O₂, H₂O₂, and OH radicals.
    Matched MeSH terms: Primulaceae/drug effects*
  2. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Int J Mol Sci, 2012;13(11):15321-42.
    PMID: 23203128 DOI: 10.3390/ijms131115321
    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
    Matched MeSH terms: Primulaceae/drug effects
  3. Ling AP, Tan KP, Hussein S
    J Zhejiang Univ Sci B, 2013 Jul;14(7):621-31.
    PMID: 23825148 DOI: 10.1631/jzus.B1200135
    OBJECTIVE: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.

    METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.

    RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.

    CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.

    Matched MeSH terms: Primulaceae/drug effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links