Displaying all 2 publications

Abstract:
Sort:
  1. Mathew S, Abraham TE, Zakaria ZA
    J Food Sci Technol, 2015 Sep;52(9):5790-8.
    PMID: 26344993 DOI: 10.1007/s13197-014-1704-0
    The free radical scavenging activity and reducing power of 16 phenolic compounds including four hydroxycinnamic acid derivatives namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid, benzoic acid and its derivatives namely protocatechuic acid, gallic acid and vanillic acid, benzene derivatives namely vanillin, vanillyl alcohol, veratryl alcohol, veratraldehyde, pyrogallol, guaiacol and two synthetic antioxidants, butylated hydroxy anisole (BHA) and propyl gallate were evaluated using 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH(•)), 2,2'-Azinobis-3- ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), Hydroxyl radical ((•)OH) and Superoxide radical (O2 (•-)) scavenging assays and reduction potential assay. By virtue of their hydrogen donating ability, phenolic compounds with multiple hydroxyl groups such as protocatechuic acid, pyrogallol, caffeic acid, gallic acid and propyl gallate exhibited higher free radical scavenging activity especially against DPPH(•) and O2 (•-). The hydroxylated cinnamates such as ferulic acid and caffeic acid were in general better scavengers than their benzoic acid counter parts such as vanillic acid and protocatechuic acid. All the phenolic compounds tested exhibited more than 85 % scavenging due to the high reactivity of the hydroxyl radical. Phenolic compounds with multiple hydroxyl groups also exhibited high redox potential. Exploring the radical scavenging and reducing properties of antioxidants especially those which are found naturally in plant sources are of great interest due to their protective roles in biological systems.
    Matched MeSH terms: Propyl Gallate
  2. Khounani Z, Hosseinzadeh-Bandbafha H, Nizami AS, Sulaiman A, Goli SAH, Tavassoli-Kafrani E, et al.
    Data Brief, 2020 Feb;28:104933.
    PMID: 31886362 DOI: 10.1016/j.dib.2019.104933
    In order to develop a product sustainably, multiple analyses, including comprehensive environmental assessment, are required. Solar-assisted production of walnut husk methanolic extract (WHME) as a natural antioxidant for biodiesel was scrutinized by using the life cycle assessment (LCA) approach. More specifically, the environmental sustainability of WHME antioxidant was evaluated and compared to that of propyl gallate (PG), the most widely used synthetic biodiesel antioxidant, under two scenarios. Additionally, supplementary files including the inventory data consisting of raw data as well as elementary flows, mid-point, and end-point categories are presented. The analysis of scenarios revealed that the use of the natural antioxidant and the avoidance of the chemical antioxidant in biodiesel fuel could be regarded as an eco-friendly approach substantially enhancing the environmental friendliness of biodiesel in particular in terms of human health. Furthermore, given the waste-oriented nature of WHME, the scenario involved its application could serve as a promising strategy to simultaneously valorize the agro-waste and generate a value-added product; a move toward implementing the circular economy approach in the biodiesel industry.
    Matched MeSH terms: Propyl Gallate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links