Displaying all 2 publications

Abstract:
Sort:
  1. Ong SS, Wickneswari R
    PLoS One, 2012;7(11):e49662.
    PMID: 23251324 DOI: 10.1371/journal.pone.0049662
    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.
    Matched MeSH terms: RNA Precursors/genetics
  2. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV
    Gene, 2015 Oct 15;571(1):71-80.
    PMID: 26115767 DOI: 10.1016/j.gene.2015.06.050
    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant.
    Matched MeSH terms: RNA Precursors/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links