Displaying all 2 publications

Abstract:
Sort:
  1. Rehman A, Rahman AR, Rasool AH
    J Hum Hypertens, 2002 Apr;16(4):261-6.
    PMID: 11967720
    The objective of this study was to examine the effect of angiotensin II (Ang II) and angiotensin II type 1 (AT(1)) receptor blockade on pulse wave velocity (PWV) in healthy humans. We studied nine young male volunteers in a double-blind randomised crossover design. Carotid-femoral PWV (an index of arterial stiffness) was measured by using a Complior machine. Subjects were previously treated for 3 days with once-daily dose of either a placebo or valsartan 80 mg. On the third day, they were infused with either placebo or 5 ng/kg/min of Ang II over 30 min. Subjects thus received placebo capsule + placebo infusion (P), valsartan + placebo infusion (V), placebo + Ang II infusion (A), and valsartan + Ang II infusion (VA) combinations. Heart rate (HR), blood pressure and PWV were recorded at baseline and then every 10 min during infusion and once after the end of infusion. There were significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) with A compared with P (P = 0.002, P = 0.002, P = 0.001 respectively). These rises in blood pressure were completely blocked by valsartan. A significant rise in PWV by A was seen compared with P (8.38 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = 0.013) and was completely blocked by valsartan; VA compared with P (7.27 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = NS). Multiple linear regression analysis showed that blockade of Ang II induced increase in blood pressure by valsartan contributed to only 30% of the total reduction in Ang II induced rise in PWV (R(2) = 0.306). The conclusions were that valsartan completely blocks the effect of Ang II on PWV. The effect of Ang II on PWV is mediated through AT(1)receptors. Reduction in PWV by Ang II antagonist is not fully explained by its pressure lowering effect of Ang II and may be partially independent of its effect on blood pressure.
    Matched MeSH terms: Receptors, Angiotensin/drug effects*
  2. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
    Matched MeSH terms: Receptors, Angiotensin/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links