Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Almayahi BA, Tajuddin AA, Jaafar MS
    Appl Radiat Isot, 2012 Nov;70(11):2652-60.
    PMID: 22982603 DOI: 10.1016/j.apradiso.2012.07.021
    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)<1 are suitable for use in agriculture and as building materials. Also, in this study H(in) and H(ex)<1 for water samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes.
    Matched MeSH terms: Thorium/analysis
  2. Asfahani J, Samuding K, Mostapa R, Othman O
    Appl Radiat Isot, 2021 Jan;167:109296.
    PMID: 33022484 DOI: 10.1016/j.apradiso.2020.109296
    Natural gamma ray well logging technique is used to characterize the radioactivity (GR) laterally and vertically in Banting district, SW of Malaysia. Seven drilled boreholes, along N-S profile with their natural gamma ray records are utilized to compute the heat production (HP) parameter, based on the Bucker and Rybach relationship.The analysis of 3467 measured points in those boreholes indicates that GR varies between 6.24 API and 358.4 API with an average of 79.95 API, while HP varies between 0.086 and 5.65 μw/m3 with an average of 1.25 μw/m3.The multi-fractal Concentration-Number (C-N) is used to characterize the radioactivity and heat production variations and to isolate different GR and HP populations in the study region. The high radioactivity and heat production ranges are mainly related to the silty clay layers, accompanied by uranium and thorium.
    Matched MeSH terms: Thorium
  3. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Thorium
  4. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
    Matched MeSH terms: Thorium/analysis
  5. Siraz MMM, Roy D, Dewan MJ, Alam MS, A M J, Rashid MB, et al.
    Environ Monit Assess, 2023 Feb 10;195(3):382.
    PMID: 36759352 DOI: 10.1007/s10661-023-10921-7
    This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
    Matched MeSH terms: Thorium/analysis
  6. Siraz MMM, Kamal MH, Khan ZH, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Aug 10;195(9):1028.
    PMID: 37558890 DOI: 10.1007/s10661-023-11636-5
    This study marks the first-ever assessment of radiological hazards linked to the sands and rocks of Patuartek Sea Beach, situated along one of the world's longest sea beaches in Cox' Bazar of Bangladesh. Through the utilization of an HPGe detector, a comprehensive analysis of the activity concentrations of 226Ra, 232Th, and 40 K was conducted, and their activity ranged from 7 to 23 Bq/kg, 9-58 Bq/kg, and 172-340 Bq/kg, respectively, in soils, and 19-24 Bq/kg, 27-39 Bq/kg, and 340-410 Bq/kg, respectively, in rocks. Some sand samples exhibited elevated levels of 232Th, while the rock samples displayed higher levels of 40 K compared to the global average. The radiological hazard parameters were assessed, and no values surpassed the recommended limits set by several international organizations. Hence, the sands and rocks of Patuartek sea beach pose no significant radiological risk to the residents or tourists. The findings of this study provide crucial insights for the development of a radiological baseline map in the country, which is important due to the commissioning of the country's first nuclear power plant Rooppur Nuclear Power Plant. The data may also stimulate interest in the rare-earth minerals present in the area, which is important for the electronics industry, thorium-based nuclear fuel cycles.
    Matched MeSH terms: Thorium/analysis
  7. Upadhyay DR, Koirala G, Shah BR, Tajudin SM, Khanal R
    Environ Monit Assess, 2024 Jan 23;196(2):190.
    PMID: 38261087 DOI: 10.1007/s10661-023-12284-5
    Soil samples from vegetable farmland in densely populated wards of Nepal were analyzed for natural radionuclide levels, employing a NaI(Tl) 3" [Formula: see text] 3" gamma detector. The study aimed to evaluate the causes of radiation risk, attributing it to soil contamination resulting from the rapid urbanization and concretization that followed the earthquake in 2015. The activity concentration of radium-226, thorium-232, and potassium-40 and the ranges observed are 2.080±0.084-33.675±1.356 Bq kg[Formula: see text], 17.222±0.198-119.949±1.379 Bq kg[Formula: see text], and 11.203 ± 0.325-748.828±21.716 Bq kg[Formula: see text], respectively. The average values obtained for hazard indices are as follows: radium equivalent activity (82.779 Bq kg[Formula: see text]), absorbed dose rate (36.394 nGy h[Formula: see text]), annual effective dose equivalent (0.045 mSv yearr[Formula: see text]), gamma index (0.291), external hazard index (0.224), internal hazard index (0.253), excess lifetime cancer risk (0.159), annual gonadal dose equivalent (243.278 mSv year[Formula: see text]), alpha index (0.054), and activity utilization index (0.716). However, in most places, thorium-232 concentration is greater than those of the world average and recommended values. In specific locations such as Ward 4 in Baluwatar, the soil was found to have concentrations of Ra[Formula: see text] and K[Formula: see text] exceeding recommended limits. Despite this localized concern, the overall analysis of hazard indices across the studied areas revealed that most values were within permissible limits. This suggests that, on a broader scale, radiation exposure may not be a significant concern in the investigated regions. Nonetheless, the study recommends regular monitoring in additional locations to ensure a comprehensive and ongoing assessment of radiation levels.
    Matched MeSH terms: Thorium*
  8. Kolo MT, Aziz SA, Khandaker MU, Asaduzzaman K, Amin YM
    Environ Sci Pollut Res Int, 2015 Sep;22(17):13127-36.
    PMID: 25925148 DOI: 10.1007/s11356-015-4577-5
    Understanding the public awareness concerning the Lynas Advanced Material Plant (LAMP), an Australian rare earths processing plant located in Malaysia, a radiological study in soil and water samples collected at random surrounding the LAMP environment was undertaken using HPGe gamma-ray spectrometry. The mean soil activities for (226)Ra, (232)Th, and (40)K were found to be 6.56 ± 0.20, 10.62 ± 0.42, and 41.02 ± 0.67 Bq/kg, respectively, while for water samples were 0.33 ± 0.05, 0.18 ± 0.04, and 4.72 ± 0.29 Bq/l, respectively. The studied areas show typical local level of radioactivity from natural background radiation. The mean gamma absorbed dose rate in soils at 1 m above the ground was found to be 11.16 nGy/h. Assuming a 20 % outdoor occupancy factor, the corresponding annual effective dose showed a mean value of 0.014 mSv year(-1), significantly lower than the worldwide average value of 0.07 mSv year(-1) for the annual outdoor effective dose as reported by UNSCEAR (2000). Some other representative radiation indices such as activity utilization index (AUI), H ex, H in, excess lifetime cancer risk (ELCR), and annual gonadal dose equivalent (AGDE) were derived and also compared with the world average values. Statistical analysis performed on the obtained data showed a strong positive correlation between the radiological variables and (226)Ra and (232)Th.
    Matched MeSH terms: Thorium/analysis*
  9. Naggar AH, Dhmees A, Seaf-Elnasr TA, Chong KF, Ali GAM, Ali HM, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):3872-3886.
    PMID: 38093080 DOI: 10.1007/s11356-023-31453-0
    The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.
    Matched MeSH terms: Thorium/chemistry
  10. Hu SJ, Koo WK, Tan KL
    Health Phys, 1984 Feb;46(2):452-5.
    PMID: 6693279
    Matched MeSH terms: Thorium/analysis*
  11. Chong CS, Ahmad GU
    Health Phys, 1982 Aug;43(2):272-3.
    PMID: 7129886
    Matched MeSH terms: Thorium/analysis*
  12. Hu SJ, Chong CS, Subas S
    Health Phys, 1981 Feb;40(2):248-50.
    PMID: 7216807
    Matched MeSH terms: Thorium/analysis*
  13. Chong CS, Chong HY, Fun HK, Leong LS
    Health Phys, 1985 Nov;49(5):1008-10.
    PMID: 4066326
    Matched MeSH terms: Thorium/analysis
  14. Hu SJ, Kandaiya S
    Health Phys, 1985 Nov;49(5):1003-7.
    PMID: 4066325
    Matched MeSH terms: Thorium/analysis*
  15. Hewson GS
    Health Phys, 1996 Aug;71(2):225-34.
    PMID: 8690608
    Processing of by-product heavy minerals (amang) from tin mining involves potential exposure to external and internal sources of radioactivity. The radioactivity arises through the presence of thorium and uranium series radionuclides in the various minerals. Monazite is the most radioactive mineral, containing 3% to 7% thorium by weight, while ilmenite is generally the least radioactive mineral containing typically less than 0.05% thorium. External exposure occurs when workers are in close proximity to accumulations or stockpiles of the radioactive minerals, whereas internal exposure occurs when workers are involved in dusty processes. This paper summarizes the nature of the amang industry in South East Asia and presents the results of preliminary measurements of external radiation and airborne radioactivity in twelve Malaysian and Thai plants. Although constrained by a paucity of exposure data, it is concluded that radiation doses to some amang plant workers may approach or exceed international standards and that appropriate control measures are required as a matter of priority, Radiation doses may approach or exceed 100 mSv in situations where workers are exposed to excessive levels of ambient dust and no protective measures are used. Observations and recommendations are made relating to monitoring and surveillance, instruction and training, and engineering and administrative protection measures.
    Matched MeSH terms: Thorium/analysis
  16. Hassan HJ, Hashim S, Abu Hanifah NZH, Ghoshal SK, Sanusi MSM, Binti Suhailin FH, et al.
    PMID: 34769689 DOI: 10.3390/ijerph182111170
    A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)-purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.
    Matched MeSH terms: Thorium/analysis
  17. Alotaibi AM, Ismail AF
    Int J Environ Res Public Health, 2022 Oct 23;19(21).
    PMID: 36360653 DOI: 10.3390/ijerph192113774
    The natural zeolite has been modified with sulphate and phosphate. The adsorption of thorium from the aqueous solutions by using the natural and modified zeolites has been investigated via a batch method. The adsorbent samples were characterized by X-ray Diffraction (XRD), N2 adsorption-desorption (BET), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX). Modification of natural zeolite with sulphate and phosphate was found to increase its adsorption capacity of thorium but reduced its specific surface area (SBET). The adsorption experiments were expressed by Langmuir, Freundlich and Dubinin-Radushkevitch (D-R) isotherm models and the results of adsorption demonstrated that the adsorption of thorium onto the natural and modified zeolites correlated better with the Langmuir isotherm model than with the Freundlich isotherm model. The maximum adsorption capacity (Qo) was determined using the Langmuir isotherm model at 25 °C and was found to be 17.27, 13.83, and 10.21 mg/g for phosphate-modified zeolite, sulfate-modified zeolite, and natural zeolite, respectively. The findings of this study indicate that phosphate-modified zeolite can be utilized as an effective and low-cost adsorbent material for the removal of thorium from aqueous solutions.
    Matched MeSH terms: Thorium
  18. Aziz Saleh M, Termizi Ramli A, Alajerami Y, Damoom M, Sadiq Aliyu A
    Isotopes Environ Health Stud, 2014;50(1):103-13.
    PMID: 24279290 DOI: 10.1080/10256016.2013.821469
    The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h(-1), 0.891 mSv y(-1) and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of (232)Th, (226)Ra and (40)K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg(-1) with a mean value of 137±5 Bq kg(-1) for (232)Th, from 21±2 to 268±9 Bq kg(-1)with a mean value of 78±3 Bq kg(-1) for (226)Ra and from 23±9 to 1268±58 Bq kg(-1) with a mean value of 207±13 Bq kg(-1) for (40)K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg(-1) and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10(-4) Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.
    Matched MeSH terms: Thorium/analysis
  19. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Thorium/analysis
  20. Tela Abba H, Wan Hassan WMS, Saleh MA, Aliyu AS, Ramli AT, Abdulsalam H
    Isotopes Environ Health Stud, 2018 Oct;54(5):522-534.
    PMID: 29847152 DOI: 10.1080/10256016.2018.1474879
    The Jos Plateau has been reported to have elevated levels of natural background radiation. A few earlier studies have measured the levels of natural radioactivity for specific locations in the area. Our interest is to investigate how geology of the study area influences the activity concentrations of natural radionuclides. Thus, the activity concentrations of terrestrial radionuclides in soil samples collected across the geological formations of the Jos Plateau were determined by gamma spectrometry technique. The mean activity concentrations of 226Ra, 232Th and 40K were found to exceed their corresponding world reference values of 35, 40 and 400 Bq kg-1, respectively. Data were compared using statistical methods, analysis of variance (ANOVA) and post hoc tests. The results revealed in some instances significant influences of geological types on the activity concentrations in the area. The spatial distribution maps of activity concentrations of 226Ra, 232Th and 40K were geostatistically interpolated by ordinary Kriging method using ArcGIS software.
    Matched MeSH terms: Thorium/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links