Displaying all 5 publications

Abstract:
Sort:
  1. Ooi FK, Singh R, Singh HJ, Umemura Y, Nagasawa S
    J Physiol Sci, 2011 Nov;61(6):487-95.
    PMID: 21870136 DOI: 10.1007/s12576-011-0169-4
    The effects of deconditioning on exercise-induced bone gains in rats were investigated in 12-week-old female WKY rats performing a standard jumping exercise regimen for either 8, 12 or 24 weeks, followed by sedentary periods of either 24, 12 or 0 weeks, respectively. Age-matched controls received no exercise over the same period. At the end of the training/sedentary period, the tibiae were harvested for analyses of bone parameters. Gains in tibial fat-free dry weight decayed within 12 weeks of deconditioning, but gains in tibial ultimate bending force (strength), maximum diameter and cortical area were still present at 12 weeks of deconditioning. With the exception of cortical area, all other exercise-induced bone gains decayed by the 24th week of deconditioning. It appears that the decay in exercise-induced bone gains in strength, physical and morphological properties is not uniform, and that gains in fat-free dry weight seem to decay earlier.
    Matched MeSH terms: Tibia/metabolism
  2. Chin KY, Ima-Nirwana S
    Aging Male, 2015 Mar;18(1):60-6.
    PMID: 25166624 DOI: 10.3109/13685538.2014.954995
    This study aimed to determine the effects of orchidectomy and supraphysiological testosterone replacement on trabecular structure and gene expression in the bone.
    Matched MeSH terms: Tibia/metabolism
  3. Mosavat M, Ooi FK, Mohamed M
    PMID: 24708608 DOI: 10.1186/1472-6882-14-126
    The effects of high and low jumping exercise intensities combined with honey on bone and gonadotrophins were investigated in eighty four 9 week-old female rats.
    Matched MeSH terms: Tibia/metabolism
  4. Wong SK, Chin KY, Ima-Nirwana S
    PMID: 31505801 DOI: 10.3390/ijerph16183313
    A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
    Matched MeSH terms: Tibia/metabolism
  5. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al.
    J Cell Physiol, 2015 Dec;230(12):3009-18.
    PMID: 26016732 DOI: 10.1002/jcp.25033
    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
    Matched MeSH terms: Tibia/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links