The innate immune system recognizes the presence of bacterial products through the expression of a family of membrane receptors known as Toll-like receptors (TLRs). Polymorphisms in TLRs have been shown to be associated with increased susceptibility to diseases such as inflammatory bowel disease. The aim of this study was to determine whether there was a correlation between polymorphisms of TLR4 (Asp299Gly; Thr399Ile) and TLR2 (Arg677Trp; Arg753Gln) genes and risk of colorectal cancer. DNA from 60 colorectal carcinoma patients from 3 major races in Malaysia (22 Malays, 20 Chinese and 18 Indians) and blood from 50 apparently healthy individuals were evaluated. Control group were matched to study group by race and age. The polymorphisms were determined by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Genotyping results showed two out of sixty tumour specimens (3.3%) harbored both variant TLR4 Asp299Gly and Thr399Ile alleles. In contrast, DNA isolated from blood cells of 50 apparently healthy individuals harbored wild type TLR4. In the case of TLR2 Arg753Gln genotyping, all of the fifty normal and 60 tumours were of the wild type genotype. TLR2 Arg677Trp genotyping showed a heterozygous pattern in all samples. However, this may not be a true polymorphism of the TLR2 gene as it is likely due to a variation of a duplicated ( pseudogene) region. There was only a low incidence (2/60; 3.3%) of TLR4 polymorphism at the Asp299Gly and Thr399Ile alleles in colorectal cancer patients. All normal and tumour samples harbored the wild type TLR2 Arg753 allele. Our study suggests that variant TLR4 (Asp299Gly and Thr399Ile alleles) as well as TLR2 (Arg753Gln allele) are not associated with risk of colorectal cancer.
At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei) interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection.
Gastric cancer (GC) is a progressive process initiated by Helicobacter pylori-induced inflammation. Initial recognition of H. pylori involves Toll-like receptors (TLRs), central molecules in the host inflammatory response. Here, we investigated the association between novel polymorphisms in genes involved in the TLR signalling pathway, including TLR2, TLR4, LBP, MD-2, CD14 and TIRAP, and risk of H. pylori infection and related GC.
Background: Infection/inflammation is an important causal factor in spontaneous preterm birth (sPTB). Most mechanistic studies have concentrated on the role of bacteria, with limited focus on the role of viruses in sPTB. Murine studies support a potential multi-pathogen aetiology in which a double or sequential hit of both viral and bacterial pathogens leads to a higher risk preterm labour. This study aimed to determine the effect of viral priming on bacterial induced inflammation in human in vitro models of ascending and haematogenous infection. Methods: Vaginal epithelial cells, and primary amnion epithelial cells and myocytes were used to represent cell targets of ascending infection while interactions between peripheral blood mononuclear cells (PBMCs) and placental explants were used to model systemic infection. To model the effect of viral priming upon the subsequent response to bacterial stimuli, each cell type was stimulated first with a TLR3 viral agonist, and then with either a TLR2 or TLR2/6 agonist, and responses compared to those of each agonist alone. Immunoblotting was used to detect cellular NF-κB, AP-1, and IRF-3 activation. Cellular TLR3, TLR2, and TLR6 mRNA was quantified by RT-qPCR. Immunoassays were used to measure supernatant cytokine, chemokine and PGE2 concentrations. Results: TLR3 ("viral") priming prior to TLR2/6 agonist ("bacterial") exposure augmented the pro-inflammatory, pro-labour response in VECs, AECs, myocytes and PBMCs when compared to the effects of agonists alone. In contrast, enhanced anti-inflammatory cytokine production (IL-10) was observed in placental explants. Culturing placental explants in conditioned media derived from PBMCs primed with a TLR3 agonist enhanced TLR2/6 agonist stimulated production of IL-6 and IL-8, suggesting a differential response by the placenta to systemic inflammation compared to direct infection as a result of haematogenous spread. TLR3 agonism generally caused increased mRNA expression of TLR3 and TLR2 but not TLR6. Conclusion: This study provides human in vitro evidence that viral infection may increase the susceptibility of women to bacterial-induced sPTB. Improved understanding of interactions between viral and bacterial components of the maternal microbiome and host immune response may offer new therapeutic options, such as antivirals for the prevention of PTB.