Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Aini I, Ibrahim AL, Spradbrow PB
    Res Vet Sci, 1990 Sep;49(2):216-9.
    PMID: 2236920
    The food pellet vaccine has been shown to be effective in trials conducted under laboratory and simulated field conditions. The village chickens vaccinated with the food pellet vaccine during the field trial were protected against virulent Newcastle disease virus. The efficacy of the food pellet vaccine in the field was evaluated by challenge trial in which 60 per cent protection was obtained, or by monitoring the incidence of Newcastle disease in vaccinated and unvaccinated birds. There was no report of Newcastle disease outbreaks in the vaccinated birds during the two-year period of the field trial. The ease in administering the food pellet vaccine makes it readily accepted by the farmers.
    Matched MeSH terms: Vaccination/veterinary*
  2. Andrišić M, Žarković I, Šandor K, Vujnović A, Perak Junaković E, Bendelja K, et al.
    Vet Immunol Immunopathol, 2022 Jan;243:110365.
    PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365
    Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
    Matched MeSH terms: Vaccination/veterinary
  3. Bala JA, Balakrishnan KN, Abdullah AA, Mohamed R, Haron AW, Jesse FFA, et al.
    Microb Pathog, 2018 Jul;120:55-63.
    PMID: 29709684 DOI: 10.1016/j.micpath.2018.04.057
    Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.
    Matched MeSH terms: Vaccination/veterinary*
  4. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
    Matched MeSH terms: Vaccination/veterinary
  5. Bell IG, Nicholls PJ, Norman C, Ideris A, Cross GM
    Aust. Vet. J., 1991 Mar;68(3):97-101.
    PMID: 2043098
    Meat chickens housed on a commercial broiler farm in Australia were vaccinated once at 10 to 11 days-of-age by aerosol with live V4 Newcastle disease virus (NDV) vaccine. Groups of vaccinated and unvaccinated birds were flown to Malaysia, where they were challenged with a virulent strain of NDV. Survival rates in vaccinated chickens challenged 7, 14, 21 or 31 d after vaccination were 0.47, 0.77, 0.97 and 0.92, respectively. All unvaccinated chickens died due to Newcastle disease (ND) following challenge. Chickens in Australia and Malaysia were bled and the serums tested for haemagglutination-inhibiting (HI) antibody to NDV. Many vaccinated birds with no detectable antibody, and all birds with a log2 titre of 2 or greater, survived challenge. The results showed that this V4 vaccine induced protective immunity in a significant proportion of chickens within 7 d of mass aerosol vaccination. This early immunity occurred in the absence of detectable circulating HI antibody. Non-HI antibody mediated immunity continued to provide protection up to 31 d after vaccination. Almost all vaccinated birds were protected within 3 w of vaccination. It is concluded that the V4 vaccine is efficacious and could be useful during an outbreak of virulent ND in Australia.
    Matched MeSH terms: Vaccination/veterinary*
  6. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
    Matched MeSH terms: Vaccination/veterinary*
  7. Broder CC, Weir DL, Reid PA
    Vaccine, 2016 06 24;34(30):3525-34.
    PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075
    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
    Matched MeSH terms: Vaccination/veterinary*
  8. Chandrasekaran S, Kennett L, Yeap PC, Muniandy N, Rani B, Mukkur TK
    Vet Microbiol, 1994 Aug 15;41(4):303-9.
    PMID: 7801530
    The relationship between the standard passive mouse protection test or serum antibody titres measured by indirect haemagglutination or enzyme-linked immunosorbent assays and active protection in buffaloes immunized with different types of haemorrhagic septicaemia bacterins was investigated. Groups of 2-3 buffaloes were immunized with the bacterins currently in use in Asia, viz., broth bacterin (BB), alum precipitated vaccine (APV) and oil adjuvant vaccine (OAV) either subcutaneously (BB, APV) or intramuscularly (OAV) and challenged subcutaneously with virulent organisms at different periods post-immunization. Although the passive mouse protection and indirect haemagglutination tests carried out with the pre-challenge sera from vaccinated buffaloes revealed no relationship with active protection in buffaloes, a relationship was observed between the ELISA antibody titres and protection. In contrast, a dose-response relationship was observed between the homologous active and passive mouse protection test.
    Matched MeSH terms: Vaccination/veterinary
  9. Chandrasekaran S, Hizat K, Saad Z, Johara MY, Yeap PC
    Br. Vet. J., 1991 Sep-Oct;147(5):437-43.
    PMID: 1959015
    The effectiveness of an oil adjuvant vaccine (OAV) incorporating locally isolated strains of Pasteurella haemolytica type 7 and Pasteurella multocida types A and D was compared with that of Carovax (Wellcome Laboratories) in imported cross-bred lambs. The criterion of efficacy was the ability of the vaccines to reduce the extent of pneumonic lesions in vaccinated as against unvaccinated control lambs. The OAV produced at this Institute significantly reduced the lung lesions at P less than 0.05 level compared with its control group when challenged with P. haemolytica alone. However, the vaccine was unsatisfactory against P. multocida or combined P. multocida P. haemolytica challenge. Carovax did not produce any significant reduction in the lung lesions caused by P. haemolytica and/or P. multocida.
    Matched MeSH terms: Vaccination/veterinary
  10. Edwards JR
    Dev Biol (Basel), 2004;119:423-31.
    PMID: 15742655
    The OIE Southeast Asia Foot-and-Mouth Disease Campaign (SEAFMD) involves the coordinated control of foot-and-mouth disease by eight of the ASEAN countries. A long term vision for SEAFMD has been developed and the core element is a progressive zoning approach to the control and eradication of FMD in the region. This paper describes the current status of FMD in Southeast Asia and progress towards achievement of OIE free zone status for FMD in parts of the Philippines and Malaysia and the initiation of the Malaysia-Thailand-Myanmar (MTM) Peninsular Campaign for FMD Freedom. In mainland Southeast Asia, the progressive zoning approach involves several sub-regional groups working in parallel to oversee the epidemiological and economic studies required to determine the feasibility of the approach. Areas involved include the Lower Mekong Basin, Upper Mekong Basin, parts of Myanmar and the Red River Delta of Vietnam. The paper describes the current usage of vaccines for FMD in Southeast Asia and provides recommendations for their supply and use in the new regional initiatives.
    Matched MeSH terms: Vaccination/veterinary*
  11. Effendy AW, Zamri-Saad M, Puspa R, Rosiah S
    Vet Rec, 1998 Apr 18;142(16):428-31.
    PMID: 9595632
    A trial was conducted to compare the efficacy of intranasal vaccination in protecting goats against pneumonic pasteurellosis with intramuscular vaccination using an oil adjuvant vaccine, and a combination of the two methods. Forty goats were divided into four equal groups. Group 1 was vaccinated twice intranasally with formalin-killed Pasteurella haemolytica A2, group 2 was vaccinated twice intramuscularly with an oil adjuvant vaccine containing P haemolytica A7, and group 3 was initially vaccinated intranasally with the formalin-killed P haemolytica A2 followed by intramuscular vaccination with the oil adjuvant vaccine. In each group the two vaccinations were carried out four weeks apart. Group 4 was the unvaccinated control group. All goats were challenged intratracheally with 4 ml of an inoculum containing live P haemolytica A2 at a concentration of 1.3 x 10(7) colony forming units/ml two weeks after the last vaccination and were killed 14 days after the challenge. Although group 2 showed the highest clinical score following the challenge, deaths were observed only in group 3. Three goats in group 1 had pneumonic lung lesions, compared with six goats in group 2 and all the goats in groups 3 and 4. The lung lesions in group 1 were significantly (P < 0.05) less severe than in groups 3 and 4. Similarly, the lesions in group 2 were markedly less severe than in groups 3 and 4, although the differences were not significant. The difference between the extent of the lung lesions in the goats in groups 1 and 2 was not significant. Antibody against P haemolytica A2 in group 1 reached peak levels and was significantly (P < 0.01) higher than in the control group one week after the second vaccination, before declining.
    Matched MeSH terms: Vaccination/veterinary
  12. Ernawati R, Ibrahim AL
    Vet Rec, 1984 Oct 06;115(14):352-4.
    PMID: 6495601
    An experimental oil emulsion Newcastle disease vaccine was evaluated for its efficacy in broiler chickens. A group of chickens vaccinated at one day old with a live lentogenic Newcastle disease vaccine and subsequently revaccinated at three and eight weeks old with the experimental oil emulsion vaccine showed satisfactory haemagglutination inhibition antibody response which persisted for 18 weeks. Between 90 and 100 per cent of the vaccinated chickens were protected when challenged with the velogenic viscerotropic Newcastle disease virus. Although the vaccinated chickens were protected against clinical disease, virus could be isolated from a number of birds. By day 10 to 12 after challenge all the chickens were free from Newcastle disease infection.
    Matched MeSH terms: Vaccination/veterinary*
  13. Faiz NM, Cortes AL, Guy JS, Fletcher OJ, West M, Montiel E, et al.
    Avian Pathol, 2016 Dec;45(6):606-615.
    PMID: 27207594
    Marek's disease virus (MDV) is a herpesvirus that induces lymphomas and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is divided into two phases: early-MDV-IS occurring mainly in chickens lacking maternal antibodies (MAb) against MDV and associated with lymphoid organ atrophy; and late-MDV-IS occurring once MDV enters latency and during tumour development. Our objectives were to document the impact of late-MDV-IS on commercial poultry (meat-type chickens bearing MAb against MDV and that were vaccinated or unvaccinated against MD) and to optimize a model to study late-MDV-IS under laboratory conditions. The impact of late-MDV-IS was evaluated by assessing the effect of early infection (day of age) with a very virulent plus MDV (vv+MDV) on the efficacy of chicken-embryo-origin (CEO) infectious laryngotracheitis (ILT) virus vaccine against ILT challenge. The CEO ILT vaccine was administered in water at 14 days of age and ILT virus (ILTV) challenge was done intratracheally at 30 days of age. Development of ILT was monitored by daily evaluation of clinical signs, development of gross and histological lesions in trachea, and quantification of ILTV transcripts in trachea. Infection with vv+MDV strain 648A resulted in total abrogation of protection conferred by the CEO vaccine against ILTV challenge even in chickens vaccinated at 1 day of age with either HVT, HVT+SB-1, or CVI988. Chickens exposed to vv+MDV prior to vaccination with CEO ILTV vaccine had similar (P 
    Matched MeSH terms: Vaccination/veterinary*
  14. Gimeno IM, Cortes AL, Faiz N, Villalobos T, Badillo H, Barbosa T
    Avian Dis, 2016 09;60(3):662-8.
    PMID: 27610727 DOI: 10.1637/11415-040116-Reg.1
    Herpesvirus of turkeys (HVT) has been successfully used as a Marek's disease (MD) vaccine for more than 40 yr. Either alone (broiler chickens) or in combination with vaccines of other serotypes (broilers, broiler breeders, and layers), HVT is used worldwide. In recent years, several vector vaccines based on HVT (rHVT) have been developed. At present, there are both conventional HVT and rHVTs in the market, and it is unknown if all of them confer the same level of protection against MD. The objective of this study was to further characterize the protection conferred by two conventional HVTs (HVT-A and HVT-B) and three recombinant HVTs (rHVT-B, rHVT-C, and rHVT-D) against MD in broiler chickens. In a first study we evaluated the efficacy of two conventional HVTs (HVT-A and HVT-B) administered at different doses (475, 1500, and 4000 PFU) at day of age on the ability to protect against an early challenge with very virulent plus strain 645. In a second experiment we evaluated the protection ability of several HVTs (both conventional and recombinant) when administered in ovo at a dose of 1500 PFU using the same challenge model. Our results show that each HVT product is unique, regardless of being conventional or recombinant, in their ability to protect against MD and might require different PFUs to achieve its maximum efficacy. In Experiment 1, HVT-A at 4000 PFU conferred higher protection (protection index [PI] = 63) than any of the other vaccine protocols (PI ranging from 36 to 47). In Experiment 2, significant differences were found among vaccine protocols with PI varying from 66 (HVT-A) to 15 (rHVT-D). Our results show that each HVT is unique and age at vaccination and vaccine dose greatly affected vaccine efficacy. Furthermore, they highlight the need of following manufacturer's recommendations.
    Matched MeSH terms: Vaccination/veterinary*
  15. Gleeson LJ
    Rev. - Off. Int. Epizoot., 2002 Dec;21(3):465-75.
    PMID: 12530354
    The author presents reports of foot and mouth disease (FMD) submitted between 1996 and 2001 to the Office International des Epizooties (OIE: World organisation for animal health) Sub-Commission for FMD in South-East Asia. Of the ten countries in South-East Asia, FMD is endemic in seven (Cambodia, Laos, Malaysia, Myanmar, the Philippines, Thailand and Vietnam) and three are free of the disease (Brunei, Indonesia and Singapore). Part of the Philippines is also recognised internationally as being free of FMD. From 1996 to 2001, serotype O viruses caused outbreaks in all seven of the endemically infected countries. On the mainland, three different type O lineages have been recorded, namely: the South-East Asian (SEA) topotype, the pig-adapted or Cathay topotype and the pan-Asian topotype. Prior to 1999, one group of SEA topotype viruses occurred in the eastern part of the region and another group in the western part. However, in 1999, the pan-Asian lineage was introduced to the region and has become widespread. The Cathay topotype was reported from Vietnam in 1997 and is the only FMD virus currently endemic in the Philippines. Type Asia 1 has never been reported from the Philippines but was reported from all countries on the mainland except Vietnam between 1996 and 2001. Type A virus has not been reported from east of the Mekong River in the past six years and seems to be mainly confined to Thailand with occasional spillover into Malaysia. The distribution and movement of FMD viruses in the region is a reflection of the trade-driven movement of livestock. There is great disparity across the region in the strength and resources of the animal health services and this has a direct impact on FMD control. Regulatory environments are not well developed and enforcement of regulations can be ineffectual. The management of animal movement is quite variable across the region and much market-driven transboundary movement of livestock is unregulated. Formal quarantine approaches are generally not supported by traders or are not available. Vaccination is not used widely as a control tool because of the expense. However, it is applied by the Veterinary Services in Malaysia to control incursions of the disease and there is a mass vaccination programme for large ruminants in Thailand where the Government produces and distributes vaccine. Vaccination is also used by the commercial pig sector, particularly in the Philippines and Thailand.
    Matched MeSH terms: Vaccination/veterinary*
  16. Hambali IU, Abdullah FFJB, Bhutto KR, Mohd Azmi ML, Wahid AH, Zakaria Z, et al.
    Trop Anim Health Prod, 2019 May;51(4):781-789.
    PMID: 30449009 DOI: 10.1007/s11250-018-1755-8
    Mastitis is the inflammation of the mammary gland due to microbial infiltration causing a reduced mammary function. This study aims at developing a vaccine using Malaysian local isolate of Staphylococcus aureus and evaluating serum amyloid A, Interleukin-10, IgM and IgG responses periodically. Four bacterin concentrations (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were adjuvanted with aluminium potassium sulphate. Thirty cows grouped into 4 treatment groups (G-) were vaccinated (2 ml) intramuscularly, with a fifth G-A as control. The mean concentration (MC) of serum amyloid A (SAA) was significantly different (sig-d) (p ˂ 0.05) in G-D at 0 h post vaccination (PV), 3 h PV, 24 h PV, weeks 1, 2, 3 and 4 PV (6-, 15-, 5-, 12-, 11-, 4- and 11-fold increased (FI) respectively). The MC of serum amyloid A was also sig-d in G-E at 0 h PV, weeks 1, 2 and 4 PV (3, 8, 5 and 8 FI respectively). The MC of IL-10 was sig-d in G-D and C at 3 h PV and week 2 PV (5 and 2 FI respectively). The IgM MC was sig-d in G-B and C at 3 h PV (5 and 6 FI respectively), at 24 h PV (5 and 9 FI respectively), at week 3 PV(2 and 2 FI respectively) and week 4 PV (3 and 4 FI respectively). The MC of IgG was sig-d in G-E at 0 h, 3 h and week 3 PV(5, 6 and 2 FI respectively) and in G-D at weeks 1-4 (3, 3, 3 and 5 FI respectively). In conclusion, elevated levels of SAA, IgG and IL-10 in G-D(108) informed our choice of best dosage which can be used to evoke immunity in cows.
    Matched MeSH terms: Vaccination/veterinary
  17. Ismail MI, Tan SW, Hair-Bejo M, Omar AR
    J Vet Sci, 2020 Nov;21(6):e76.
    PMID: 33263227 DOI: 10.4142/jvs.2020.21.e76
    BACKGROUND: The predominant infectious bronchitis virus (IBV) strains detected in chickens in Malaysia are the Malaysian variant (MV) and QX-like, which are associated with respiratory distress, nephropathy, and high mortality. On the other hand, the antigenic relatedness and efficacy of IBV vaccines against these 2 field IBV strains are not well characterized.

    OBJECTIVES: This study aimed to determine the antigen relatedness and efficacy of different IB vaccine strains against a challenge with MV and QX-like strains.

    METHODS: The antigen relatedness and the ability of different IB vaccine strains in conferring protection against MV and QX-like were assessed based on the clinical signs, macroscopic lesions, and ciliary activity.

    RESULTS: The MV strain IBS037A/2014 showed minor antigenic subtype differences with the vaccine virus Mass H120 and 4/91 strains but showed major antigenic subtype differences with the K2 strain. The Malaysian QX-like strain IBS130/2015 showed major antigenic subtype differences with the MV strain IBS037A/2014 and the vaccine strains except for K2. Chickens vaccinated once with Mass (H120) or with non-Mass (4/91 and K2) developed antibody responses with the highest antibody titer detected in the groups vaccinated with H120 and 4/91. The mean ciliary activities of the vaccinated chickens were between 56 to 59% and 48 to 52% in chickens challenged with IBS037A/2014 and IBS130/2015, respectively. The vaccinated and challenged birds showed mild to severe lesions in the lungs and kidneys.

    CONCLUSIONS: Despite the minor antigenic subtype differences, a single inoculation with Mass or non-Mass vaccines could not protect against the MV IBS037A/2014 and QX-like IBS130/2015.

    Matched MeSH terms: Vaccination/veterinary*
  18. Ismail MS, Syafiq MR, Siti-Zahrah A, Fahmi S, Shahidan H, Hanan Y, et al.
    Fish Shellfish Immunol, 2017 Jan;60:21-24.
    PMID: 27864157 DOI: 10.1016/j.fsi.2016.11.040
    A tilapia farm experiencing endemic streptococcosis was selected to study the effect of vaccination with a feed-based vaccine on naturally ocurring streptococcosis. A total of 9000 red tilapia, Oreochromis niloticus × Oreochromis mossambicus of 100 ± 20 g were divided into 9 cages. Fish of Group 1 in cages 1, 2 and 3 were not vaccinated. Group 2 in cages 4, 5 and 6 were vaccinated on days 0 and 14 (single booster) while Group 3 in cages 7, 8 and 9 were vaccinated on days 0, 14 and 42 (double booster). Vaccination was done by oral administration of the feed-based bacterin vaccine at 4% bodyweight. Samples of serum for antibody study and the brain, eyes and kidney for bacterial isolation were collected at 14-day intervals. The study was carried out during the critical months between April and June. Following vaccination and booster, there was significant (p 
    Matched MeSH terms: Vaccination/veterinary
  19. Jazayeri SD, Ideris A, Zakaria Z, Yeap SK, Omar AR
    Comp Immunol Microbiol Infect Dis, 2012 Sep;35(5):417-27.
    PMID: 22512819 DOI: 10.1016/j.cimid.2012.03.007
    This study evaluates the immune responses of single avian influenza virus (AIV) HA DNA vaccine immunization using attenuated Salmonella enterica sv. Typhimurium as an oral vaccine carrier and intramuscular (IM) DNA injection. One-day-old specific-pathogen-free (SPF) chicks immunized once by oral gavage with 10(9) Salmonella colony-forming units containing plasmid expression vector encoding the HA gene of A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1.H5) did not show any clinical manifestations. Serum hemagglutination inhibition (HI) titer samples collected from the IM immunized chickens were low compared to those immunized with S. typhimurium.pcDNA3.1.H5. The highest average antibody titers were detected on day 35 post immunization for both IM and S. typhimurium.pcDNA3.1.H5 immunized groups, at 4.0±2.8 and 51.2±7.5, respectively. S. typhimurium.pcDNA3.1.H5 also elicited both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMCs) of immunized chickens as early as day 14 after immunization, at 20.5±2.0 and 22.9±1.9%, respectively. Meanwhile, the CD4(+) and CD8(+) T cells in chickens vaccinated intramuscularly were low at 5.9±0.9 and 8.5±1.3%, respectively. Immunization of chickens with S. typhimurium.pcDNA3.1.H5 enhanced IL-1β, IL-12β, IL-15 and IL-18 expressions in spleen although no significant differences were recorded in chickens vaccinated via IM and orally with S. typhimurium and S. typhimurium.pcDNA3.1. Hence, single oral administrations of the attenuated S. typhimurium containing pcDNA3.1.H5 showed antibody, T cell and Th1-like cytokine responses against AIV in chickens. Whether the T cell response induced by vaccination is virus-specific and whether vaccination protects against AIV infection requires further study.
    Matched MeSH terms: Vaccination/veterinary
  20. Jesse FFA, Chung ELT, Abba Y, Muniandy KV, Tan AHAR, Maslamany D, et al.
    Trop Anim Health Prod, 2019 Feb;51(2):289-295.
    PMID: 30088124 DOI: 10.1007/s11250-018-1683-7
    Pneumonic pasteurellosis is an economically important infectious disease in the small ruminant industry which causes sudden death and loss for farmers. Nonetheless, this disease is still a common sight in sheep and goats in Malaysia, probably due to the unpopular usage of pasteurellosis vaccine or inappropriate vaccination practices. The aim of this study was designed to classify the severity of pneumonia via the establishment of auscultation scoring method and to quantify the acute phase proteins and heat shock proteins responses from vaccinated and non-vaccinated goats. Goat farms, consist of vaccinated and non-vaccinated farms, were selected in this study: where 15 clinically normal healthy goats and 9 pneumonic goats were selected from vaccinated farms whereas 15 clinically normal healthy goats and 31 pneumonic goats from non-vaccinated farms were selected for this study. Crackle lung sounds were not detected in both vaccinated and non-vaccinated normal goats. However, vaccinated pneumonic goats showed mild crackle lung sound while non-vaccinated pneumonic goats exhibited moderate crackle lung sound. There were significant increases (p 
    Matched MeSH terms: Vaccination/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links