Displaying publications 1 - 20 of 532 in total

Abstract:
Sort:
  1. Yee W
    World J Microbiol Biotechnol, 2016 Apr;32(4):64.
    PMID: 26931604 DOI: 10.1007/s11274-016-2023-6
    Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
    Matched MeSH terms: Waste Water/microbiology
  2. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A
    Water Sci Technol, 2014 10 18;70(7):1161-7.
    PMID: 25325539 DOI: 10.2166/wst.2014.343
    Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.
    Matched MeSH terms: Waste Water
  3. Jong VS, Tang FE
    Water Sci Technol, 2014;70(2):352-60.
    PMID: 25051484 DOI: 10.2166/wst.2014.237
    A two-staged engineered wetland-based system was designed and constructed to treat raw domestic septage. Hydraulic loading rates (HLRs) of 8.75 and 17.5 cm/d were studied with four and eight daily dosings at the second stage of the system to investigate the influence of the regimes on septage treatment. Removal of organic matter (OM) was found to be HLR dependent, where the results indicated that the increase of HLR from 8.75 to 17.5 cm/d impaired the overall level of treatment in the wetland units. Effluent of wetland fed at HLR 17.5 cm/d presented significantly lower oxygen reduction potential and dissolved oxygen values than wetland fed at 8.75 cm/d, indicative of the occurrence of less aerobic and reductive conditions in the bed. The reoxygenation capability of the wetland units was found to be heavily affected by the dosing frequency especially under high hydraulic load (17.5 cm/d). NH3-N degradation was found to decrease with statistical importance when the wetland was flushed two times more frequently with smaller batches of influent. The number of hydraulic load fractionings did not seem to affect the level of treatments of OM and ammonia for both the wetlands fed under the lower HLR of 8.75 cm/d. Prediction of hydraulic limits and management of the feeding strategies are important in the vertical type of engineered wetlands to guarantee the treatment performance and minimize the chances of filter clogging.
    Matched MeSH terms: Waste Water*
  4. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Waste Water
  5. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
    Matched MeSH terms: Waste Water
  6. Mohd Amin MF, Heijman SG, Rietveld LC
    Water Sci Technol, 2016;73(7):1719-27.
    PMID: 27054745 DOI: 10.2166/wst.2016.001
    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.
    Matched MeSH terms: Waste Water/chemistry*
  7. Mak CY, Lin JG, Chen WH, Ng CA, Bashir MJK
    Water Sci Technol, 2019 May;79(10):1860-1867.
    PMID: 31294702 DOI: 10.2166/wst.2019.188
    The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2--N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.
    Matched MeSH terms: Waste Water
  8. Chua SC, Show PL, Chong FK, Ho YC
    Water Sci Technol, 2020 Nov;82(9):1833-1847.
    PMID: 33201847 DOI: 10.2166/wst.2020.409
    Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment. The efficiency of the lentil extract (LE), grafted lentil extract (LE-g-DMC) and aluminium sulphate (alum) coagulants was optimized through the response surface methodology. Three-level Box-Behnken design was used to statistically visualize the complex interactions of pH, concentration of coagulants and settling time. LE achieved a significant 99.55% and 79.87% removal of turbidity and COD at pH 4, 88.46 mg/L of LE and 6.9 minutes of settling time, whereas LE-g-DMC achieved 99.83% and 80.32% removal of turbidity and COD at pH 6.7, 63.08 mg/L of LE-g-DMC and 5 minutes of settling time. As compared to alum, LE-g-DMC required approximately 30% less concentration. Moreover, LE and LE-g-DMC also required 75% and 65% less settling time as compared to the alum. Both LE and LE-g-DMC produced flocs with excellent settling ability (5.77 mg/L and 4.48 mL/g) and produced a significant less volume of sludge (10.60 mL/L and 8.23 mL/L) as compared with the alum. The economic analysis and assessments have proven the feasibility of both lentil-based coagulants in agricultural wastewater treatment.
    Matched MeSH terms: Waste Water
  9. Sekine M, Yoshida A, Akizuki S, Kishi M, Toda T
    Water Sci Technol, 2020 Sep;82(6):1070-1080.
    PMID: 33055397 DOI: 10.2166/wst.2020.153
    A novel coupling process using an aerobic bacterial reactor with nitrification and sulfur-oxidization functions followed by a microalgal reactor was proposed for simultaneous biogas desulfurization and anaerobic digestion effluent (ADE) treatment. ADE nitrified by bacteria has a potential to be directly used as a culture medium for microalgae because ammonium nitrogen, including inhibitory free ammonia (NH3), has been converted to harmless NO3-. To demonstrate this hypothesis, Chlorella sorokiniana NIES-2173, which has ordinary NH3 tolerance; that is, 1.6 mM of EC50 compared with other species, was cultivated using untreated/treated ADE. Compared with the use of a synthetic medium, when using ADE with 1-10-fold dilutions, the specific growth rate and growth yield maximally decreased by 44% and 88%, respectively. In contrast, the algal growth using undiluted ADE treated by nitrification-desulfurization was almost the same as with using synthetic medium. It was also revealed that 50% of PO43- and most metal concentrations of ADE decreased following nitrification-desulfurization treatment. Moreover, upon NaOH addition for pH adjustment, the salinity increased to 0.66%. The decrease in metals mitigates the bioconcentration of toxic heavy metals from wastewater in microalgal biomass. Meanwhile, salt stress in microalgae and limiting nutrient supplementation, particularly for continuous cultivation, should be of concern.
    Matched MeSH terms: Waste Water
  10. Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz S, Abu Amr SS
    Water Sci Technol, 2016 Sep;74(6):1312-1325.
    PMID: 27685961
    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
    Matched MeSH terms: Waste Water/chemistry*
  11. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Waste Water/chemistry
  12. Lakshmanan S, Murugesan T
    Water Sci Technol, 2017 Jul;76(1-2):87-94.
    PMID: 28708613 DOI: 10.2166/wst.2017.182
    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.
    Matched MeSH terms: Waste Water/chemistry*
  13. George DS, Anthony KK, Santhirasegaram V, Saruan NM, Kaur H, Razali Z, et al.
    Water Sci Technol, 2017 May;75(10):2465-2474.
    PMID: 28541954 DOI: 10.2166/wst.2017.080
    The effect of two different water sources (treated waste water and lake water) used for irrigation on the soil geochemical properties and the fruit quality parameters of the Lohan guava were studied. The fruits' physical attributes, physicochemical attributes, nutritional attributes, mineral content as well as consumers' acceptance were evaluated. The properties of the different water sources and their effect, on both the soil and the quality of the fruits, were evaluated. Analysis of the irrigation water revealed that treated waste water was of acceptable quality with reference to irrigation water quality guidelines, while the lake water used for irrigation fell short in several aspects. The different water sources used for irrigation in the farms affected the soil geochemical properties significantly. The quality of guavas harvested from the farms that were irrigated with different water sources was significantly different. Irrigation water qualities were observed to have positive effects on the quality of the fruits and consumers' acceptance as observed from the results of quality analysis and the consumers' acceptance test.
    Matched MeSH terms: Waste Water
  14. Wang Y, Zhao Y, Xu L, Wang W, Doherty L, Tang C, et al.
    Water Sci Technol, 2017 Jul;76(2):471-477.
    PMID: 28726712 DOI: 10.2166/wst.2017.190
    In the last 10 years, the microbial fuel cell (MFC) has been extensively studied worldwide to extract energy from wastewater via electricity generation. More recently, a merged technique of embedding MFC into a constructed wetland (CW) has been developed and appears to be increasingly investigated. The driving force to integrate these two technologies lies in the fact that CWs naturally possess a redox gradient (depending on flow direction and wetland depth), which is required by MFCs as anaerobic anode and aerobic cathode chambers. No doubt, the integration of MFC with a CW will upgrade the CW to allow it to be used for wastewater treatment and, simultaneously, electricity generation, making CWs more sustainable and environmentally friendly. Currently, published work shows that India, China, Ireland, Spain, Germany and Malaysia are involved in the development of this technology although it is in its infant stage and many technical issues are faced on system configuration, operation and maximisation of electricity production. This paper aims to provide an updated review and analysis of the CW-MFC development. Focuses are placed on the experience gained so far from different researchers in the literature and further research directions and proposals are discussed in great detail.
    Matched MeSH terms: Waste Water
  15. Bonakdari H, Ebtehaj I, Akhbari A
    Water Sci Technol, 2017 Jun;75(12):2791-2799.
    PMID: 28659519 DOI: 10.2166/wst.2017.158
    Electrocoagulation (EC) is employed to investigate the energy consumption (EnC) of synthetic wastewater. In order to find the best process conditions, the influence of various parameters including initial pH, initial dye concentration, applied voltage, initial electrolyte concentration, and treatment time are investigated in this study. EnC is considered the main criterion of process evaluation in investigating the effect of the independent variables on the EC process and determining the optimum condition. Evolutionary polynomial regression is combined with a multi-objective genetic algorithm (EPR-MOGA) to present a new, simple and accurate equation for estimating EnC to overcome existing method weaknesses. To survey the influence of the effective variables, six different input combinations are considered. According to the results, EPR-MOGA Model 1 is the most accurate compared to other models, as it has the lowest error indices in predicting EnC (MARE = 0.35, RMSE = 2.33, SI = 0.23 and R2 = 0.98). A comparison of EPR-MOGA with reduced quadratic multiple regression methods in terms of feasibility confirms that EPR-MOGA is an effective alternative method. Moreover, the partial derivative sensitivity analysis method is employed to analyze the EnC variation trend according to input variables.
    Matched MeSH terms: Waste Water*
  16. Mook WT, Aroua MK, Szlachta M, Lee CS
    Water Sci Technol, 2017 02;75(3-4):952-962.
    PMID: 28234295 DOI: 10.2166/wst.2016.563
    In this work, a regression model obtained from response surface methodology (RSM) was proposed for the electrocoagulation (EC) treatment of textile wastewater. The Reactive Black 5 dye (RB5) was used as a model dye to evaluate the performance of the model design. The effect of initial solution pH, applied current and treatment time on RB5 removal was investigated. The total number of experiments designed by RSM amounted to 27 runs, including three repeated experimental runs at the central point. The accuracy of the model was evaluated by the F-test, coefficient of determination (R(2)), adjusted R(2) and standard deviation. The optimum conditions for RB5 removal were as follows: initial pH of 6.63, current of 0.075 A, electrolyte dose of 0.11 g/L and EC time of 50.3 min. The predicted RB5 removal was 83.3% and the percentage error between experimental and predicted results was only 3-5%. The obtained data confirm that the proposed model can be used for accurate prediction of RB5 removal. The value of the zeta potential increased with treatment time, and the X-ray diffraction pattern shows that iron complexes were found in the sludge.
    Matched MeSH terms: Waste Water/chemistry*
  17. Mohammed JN, Wan Dagang WRZ
    Water Sci Technol, 2019 Nov;80(10):1807-1822.
    PMID: 32144213 DOI: 10.2166/wst.2020.025
    The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
    Matched MeSH terms: Waste Water*
  18. How SW, Sin JH, Wong SYY, Lim PB, Mohd Aris A, Ngoh GC, et al.
    Water Sci Technol, 2020 Jan;81(1):71-80.
    PMID: 32293590 DOI: 10.2166/wst.2020.077
    Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.
    Matched MeSH terms: Waste Water*
  19. Nair SS, Pinedo-Cuenca R, Stubbs T, Davis SJ, Ganesan PB, Hamad F
    Water Sci Technol, 2022 Nov;86(9):2138-2156.
    PMID: 36378171 DOI: 10.2166/wst.2022.328
    Microbubble (MB) technology constitutes a suite of promising low-cost technologies with potential applications in various sectors. Microbubbles (MBs) are tiny gas bubbles with diameters in the micrometre range of 10-100 μm. Along with their small size, they share special characteristics like slow buoyancy, large gas-liquid interfacial area and high mass-transfer efficiency. Initially, the review examines the key dissimilarities among the different types of microbubble generators (MBG) towards economic large-scale production of MBs. The applications of MBs to explore their effectiveness at different stages of wastewater treatment extending from aeration, separation/ flotation, ozonation, disinfection and other processes are investigated. A summary of the recent advances of MBs in real and synthetic wastewater treatment, existing research gaps, and limitations in upscaling of the technology, conclusion and future recommendations is detailed. A critical analysis of the energetics and treatment cost of combined approaches of MB technology with other advanced oxidation processes (AOPs) is carried out highlighting the potential applicability of hybrid technology in large-scale wastewater treatment.
    Matched MeSH terms: Waste Water
  20. Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, et al.
    Water Sci Technol, 2021 Nov;84(9):2113-2130.
    PMID: 34810301 DOI: 10.2166/wst.2021.415
    Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
    Matched MeSH terms: Waste Water*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links