OBJECTIVE: This study aimed to investigate the validity of HR measures of a high-cost consumer-based tracker (Polar A370) and a low-cost tracker (Tempo HR) in the laboratory and free-living settings.
METHODS: Participants underwent a laboratory-based cycling protocol while wearing the two trackers and the chest-strapped Polar H10, which acted as criterion. Participants also wore the devices throughout the waking hours of the following day during which they were required to conduct at least one 10-min bout of moderate-to-vigorous physical activity (MVPA) to ensure variability in the HR signal. We extracted 10-second values from all devices and time-matched HR data from the trackers with those from the Polar H10. We calculated intraclass correlation coefficients (ICCs), mean absolute errors, and mean absolute percentage errors (MAPEs) between the criterion and the trackers. We constructed decile plots that compared HR data from Tempo HR and Polar A370 with criterion measures across intensity deciles. We investigated how many HR data points within the MVPA zone (≥64% of maximum HR) were detected by the trackers.
RESULTS: Of the 57 people screened, 55 joined the study (mean age 30.5 [SD 9.8] years). Tempo HR showed moderate agreement and large errors (laboratory: ICC 0.51 and MAPE 13.00%; free-living: ICC 0.71 and MAPE 10.20%). Polar A370 showed moderate-to-strong agreement and small errors (laboratory: ICC 0.73 and MAPE 6.40%; free-living: ICC 0.83 and MAPE 7.10%). Decile plots indicated increasing differences between Tempo HR and the criterion as HRs increased. Such trend was less pronounced when considering the Polar A370 HR data. Tempo HR identified 62.13% (1872/3013) and 54.27% (5717/10,535) of all MVPA time points in the laboratory phase and free-living phase, respectively. Polar A370 detected 81.09% (2273/2803) and 83.55% (9323/11,158) of all MVPA time points in the laboratory phase and free-living phase, respectively.
CONCLUSIONS: HR data from the examined wrist-worn trackers were reasonably accurate in both the settings, with the Polar A370 showing stronger agreement with the Polar H10 and smaller errors. Inaccuracies increased with increasing HRs; this was pronounced for Tempo HR.
OBJECTIVE: The purpose of this study was to sense atrial contractions from the Micra ACC signal and provide AV synchronous pacing.
METHODS: The Micra Accelerometer Sensor Sub-Study (MASS) and MASS2 early feasibility studies showed intracardiac accelerations related to atrial contraction can be measured via ACC in the Micra leadless pacemaker. The Micra Atrial TRacking Using A Ventricular AccELerometer (MARVEL) study was a prospective multicenter study designed to characterize the closed-loop performance of an AV synchronous algorithm downloaded into previously implanted Micra devices. Atrioventricular synchrony (AVS) was measured during 30 minutes of rest and during VVI pacing. AVS was defined as a P wave visible on surface ECG followed by a ventricular event <300 ms.
RESULTS: A total of 64 patients completed the MARVEL study procedure at 12 centers in 9 countries. Patients were implanted with a Micra for a median of 6.0 months (range 0-41.4). High-degree AV block was present in 33 patients, whereas 31 had predominantly intrinsic conduction during the study. Average AVS during AV algorithm pacing was 87.0% (95% confidence interval 81.8%-90.9%), 80.0% in high-degree block patients and 94.4% in patients with intrinsic conduction. AVS was significantly greater (P