Displaying all 5 publications

Abstract:
Sort:
  1. Zhong J, Huang W, Ahmad R, Chen J, Wu C, Hu J, et al.
    Adv Healthc Mater, 2024 Sep;13(22):e2400091.
    PMID: 38722148 DOI: 10.1002/adhm.202400091
    The role of the biomechanical stimulation generated from soft tissue has not been well quantified or separated from the self-regulated hard tissue remodeling governed by Wolff's Law. Prosthodontic overdentures, commonly used to restore masticatory functions, can cause localized ischemia and inflammation as they often compress patients' oral mucosa and impede local circulation. This biomechanical stimulus in mucosa is found to accelerate the self-regulated residual ridge resorption (RRR), posing ongoing clinical challenges. Based on the dedicated long-term clinical datasets, this work develops an in-silico framework with a combination of techniques, including advanced image post-processing, patient-specific finite element models and unsupervised machine learning Self-Organizing map algorithm, to identify the soft tissue induced RRR and quantitatively elucidate the governing relationship between the RRR and hydrostatic pressure in mucosa. The proposed governing equation has not only enabled a predictive simulation for RRR as showcased in this study, providing a biomechanical basis for optimizing prosthodontic treatments, but also extended the understanding of the mechanobiological responses in the soft-hard tissue interfaces and the role in bone remodeling.
    Matched MeSH terms: Alveolar Bone Loss/pathology
  2. Al Batran R, Al-Bayaty FH, Al-Obaidi MM
    Biomed Res Int, 2013;2013:276329.
    PMID: 24151590 DOI: 10.1155/2013/276329
    Alveolar bone resorption is one of the most important facts in denture construction. Porphyromonas gingivalis (Pg) causes alveolar bone resorption, and morphologic measurements are the most frequent methods to identify bone resorption in periodontal studies. This study has aimed at evaluating the effect of Andrographolide (AND) on alveolar bone resorption in rats induced by Pg. 24 healthy male Sprague Dawley rats were divided into four groups as follows: normal control group and three experimental groups challenged orally with Pg ATCC 33277 five times a week supplemented with 20 mg/kg and 10 mg/kg of AND for twelve weeks. Alveolar bones of the left and right sides of the mandible were assessed by a morphometric method. The bone level, that is, the distance from the alveolar bone crest to cementumenamel junction (CEJ), was measured using 6.1 : 1 zoom stereomicroscope and software. AND reduced the effect of Pg on alveolar bone resorption and decreased the serum levels of Hexanoyl-Lysine (HEL); furthermore the reduced glutathione/oxidised glutathione (GSH/GSSG) ratio in AND treated groups (10 and 20 mg/kg) significantly increased when compared with the Pg group (P < 0.05). We can conclude that AND suppresses alveolar bone resorption caused by Pg in rats.
    Matched MeSH terms: Alveolar Bone Loss/pathology
  3. Subramaniam K, Nah SH, Marks SC
    Lepr Rev, 1994 Jun;65(2):137-42.
    PMID: 7968186
    The loss of alveolar bone supporting the maxillary central incisors and the general periodontal conditions were evaluated after 14 years in the 12 patients remaining from an original group of 47 under treatment in Malaysia. Alveolar bone loss was minimal during this period even in the presence of periodontal inflammation. These data suggest that treatment protects patients with leprosy from alveolar bone loss and suggests that other skeletal deformities might respond similarly.
    Matched MeSH terms: Alveolar Bone Loss/pathology
  4. Mustafa H, Cheng CH, Radzi R, Fong LS, Mustapha NM, Dyary HO
    Pol J Vet Sci, 2021 Sep;24(3):365-373.
    PMID: 34730299 DOI: 10.24425/pjvs.2021.138727
    Periodontitis is a highly prevalent, chronic immune-inflammatory disease of the periodontium that results in the periodontium and alveolar bone loss's progressive destruction. In this study, the induction of periodontal disease via retentive ligature, lipopolysaccharide, and their combination at three different times were compared in a rat model. Seventy-two Sprague Dawley rats were distributed into four treatment groups: 1) control group with no treatment; 2) application of 4/0 nylon ligature around second maxillary molars; 3) combination of ligature and LPS injection (ligature-LPS); 4) intragingival injection of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to the palatal mucosa of the second maxillary molars. Six rats were sacrificed from each group after 7, 14, and 30 days of periodontal disease induction. Alveolar bone loss, attachment loss, number of inflammatory cells, and blood vessels were evaluated histologically. A micro-CT scan was used as a parameter to know the rate of alveolar bone loss. Parametric data were analyzed using two-way ANOVA followed by Bonferroni correction with a significance set at 5%. Non-parametric data were analyzed using Kruskal-Wallis, followed by multiple comparisons with Bonferroni correction. The histological results revealed significant destructive changes in the periodontal tissues and alveolar bone following the ligature and ligature-LPS induction techniques. These changes were evident as early as seven days, maintained until 14 days post-treatment, and declined with time. The ligature technique was effective in inducing acute periodontal disease. The LPS injection technique did not induce alveolar bone loss, and its combination to ligature added insignificant effects.
    Matched MeSH terms: Alveolar Bone Loss/pathology
  5. Daood U, Abduljabbar T, Al-Hamoudi N, Akram Z
    J Periodontal Res, 2018 Feb;53(1):123-130.
    PMID: 28940417 DOI: 10.1111/jre.12496
    BACKGROUND AND OBJECTIVE: The aim of the present study was to compare clinical periodontal parameters and to assess the release of C-telopeptides pyridinoline cross-links (ICTP) and C-terminal crosslinked telopeptide (CTX) from gingival collagen of naswar (NW) and non-naswar (control) dippers.

    MATERIAL AND METHODS: Eighty-seven individuals (42 individuals consuming NW and 45 controls) were included. Clinical (plaque index, bleeding on probing, probing depth and clinical attachment loss) and radiographic (marginal bone loss) periodontal parameters were compared among NW and control groups. Gingival specimens were taken from subjects in NW and control groups, assessed for ICTP and CTX levels (using ELISA) and analyzed using micro-Raman spectroscopy. The significance of differences in periodontal parameters between the groups was determined using Kruskal-Wallis and Mann-Whitney U tests. The percent loss of dry mass over exposure time and the rate of release of ICTP and CTX from all groups were compared using the paired t-test to examine the effects of exposure time.

    RESULTS: Clinical and radiographic periodontal parameters were significantly higher in the NW group than the control group (P 

    Matched MeSH terms: Alveolar Bone Loss/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links