Displaying all 3 publications

Abstract:
Sort:
  1. Sharifzadeh G, Hosseinkhani H
    Adv Healthc Mater, 2017 Dec;6(24).
    PMID: 29057617 DOI: 10.1002/adhm.201700801
    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
  2. Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, et al.
    Adv Healthc Mater, 2017 Jan;6(1).
    PMID: 27860384 DOI: 10.1002/adhm.201600920
    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
  3. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al.
    Adv Healthc Mater, 2019 Aug;8(16):e1900569.
    PMID: 31265217 DOI: 10.1002/adhm.201900569
    Inflammation is tightly linked to tissue injury. In regenerative medicine, immune activation plays a key role in rejection of transplanted stem cells and reduces the efficacy of stem cell therapies. Next-generation smart biomaterials are reported to possess multiple biologic properties for tissue repair. Here, the first use of 0D titanium carbide (Ti3 C2 ) MXene quantum dots (MQDs) for immunomodulation is presented with the goal of enhancing material-based tissue repair after injury. MQDs possess intrinsic immunomodulatory properties and selectively reduce activation of human CD4+ IFN-γ+ T-lymphocytes (control 87.1 ± 2.0%, MQDs 68.3 ± 5.4%) while promoting expansion of immunosuppressive CD4+ CD25+ FoxP3+ regulatory T-cells (control 5.5 ± 0.7%, MQDs 8.5 ± 0.8%) in a stimulated lymphocyte population. Furthermore, MQDs are biocompatible with bone marrow-derived mesenchymal stem cells and induced pluripotent stem cell-derived fibroblasts. Finally, Ti3 C2 MQDs are incorporated into a chitosan-based hydrogel to create a 3D platform with enhanced physicochemical properties for stem cell delivery and tissue repair. This composite hydrogel demonstrates increased conductivity while maintaining injectability and thermosensitivity. These findings suggest that this new class of biomaterials may help bridge the translational gap in material and stem cell-based therapies for tissue repair and treatment of inflammatory and degenerative diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links