Displaying all 5 publications

Abstract:
Sort:
  1. Juntit OA, Sornsuwan K, Wisitponchai T, Sanghiran Lee V, Sakkhachornphop S, Yasamut U, et al.
    Int J Mol Sci, 2023 Mar 09;24(6).
    PMID: 36982337 DOI: 10.3390/ijms24065266
    Several anti-HIV scaffolds have been proposed as complementary treatments to highly active antiretroviral therapy. AnkGAG1D4, a designed ankyrin repeat protein, formerly demonstrated anti-HIV-1 replication by interfering with HIV-1 Gag polymerization. However, the improvement of the effectiveness was considered. Recently, the dimeric molecules of AnkGAG1D4 were accomplished in enhancing the binding activity against HIV-1 capsid (CAp24). In this study, the interaction of CAp24 against the dimer conformations was elucidated to elaborate the bifunctional property. The accessibility of the ankyrin binding domains was inspected by bio-layer interferometry. By inverting the second module of dimeric ankyrin (AnkGAG1D4NC-CN), the CAp24 interaction KD was significantly reduced. This reflects the capability of AnkGAG1D4NC-CN in simultaneously capturing CAp24. On the contrary, the binding activity of dimeric AnkGAG1D4NC-NC was indistinguishable from the monomeric AnkGAG1D4. The bifunctional property of AnkGAG1D4NC-CN was subsequently confirmed in the secondary reaction with additional p17p24. This data correlates with the MD simulation, which suggested the flexibility of the AnkGAG1D4NC-CN structure. The CAp24 capturing capacity was influenced by the distance of the AnkGAG1D4 binding domains to introduce the avidity mode of AnkGAG1D4NC-CN. Consequently, AnkGAG1D4NC-CN showed superior potency in interfering with HIV-1 NL4-3 WT and HIV-1 NL4-3 MIRCAI201V replication than AnkGAG1D4NC-NC and an affinity improved AnkGAG1D4-S45Y.
    Matched MeSH terms: Ankyrins*
  2. Wisitponchai T, Shoombuatong W, Lee VS, Kitidee K, Tayapiwatana C
    BMC Bioinformatics, 2017 Apr 19;18(1):220.
    PMID: 28424069 DOI: 10.1186/s12859-017-1628-6
    BACKGROUND: Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet.

    RESULTS: In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses.

    CONCLUSION: The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .

    Matched MeSH terms: Ankyrins/metabolism*
  3. Saoin S, Wisitponchai T, Intachai K, Chupradit K, Moonmuang S, Nangola S, et al.
    Asian Pac J Allergy Immunol, 2018 06;36(2):126-135.
    PMID: 28802032 DOI: 10.12932/AP-280217-0037
    BACKGROUND: AnkGAG1D4 is an artificial ankyrin repeat protein which recognizes the capsid protein (CA) of the human immunodeficiency virus type 1 (HIV-1) and exhibits the intracellular antiviral activity on the viral assembly process. Improving the binding affinity of AnkGAG1D4 would potentially enhance the AnkGAG1D4-mediated antiviral activity.

    OBJECTIVE: To augment the affinity of AnkGAG1D4 scaffold towards its CA target, through computational predictions and experimental designs.

    METHOD: Three dimensional structure of the binary complex formed by AnkGAG1D4 docked to the CA was used as a model for van der Waals (vdW) binding energy calculation. The results generated a simple guideline to select the amino acids for modifications. Following the predictions, modified AnkGAG1D4 proteins were produced and further evaluated for their CA-binding activity, using ELISA-modified method and bio-layer interferometry (BLI).

    RESULTS: Tyrosine at position 56 (Y56) in AnkGAG1D4 was experimentally identified as the most critical residue for CA binding. Rational substitutions of this residue diminished the binding affinity. However, vdW calculation preconized to substitute serine for tyrosine at position 45. Remarkably, the affinity for the viral CA was significantly enhanced in AnkGAG1D4-S45Y mutant, with no alteration of the target specificity.

    CONCLUSIONS: The S-to-Y mutation at position 45, based on the prediction of interacting amino acids and on vdW binding energy calculation, resulted in a significant enhancement of the affinity of AnkGAG1D4 ankyrin for its CA target. AnkGAG1D4-S45Y mutant represented the starting point for further construction of variants with even higher affinity towards the viral CA, and higher therapeutic potential in the future.

    Matched MeSH terms: Ankyrins/metabolism; Ankyrins/pharmacology; Ankyrins/chemistry
  4. Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS
    Molecules, 2021 Jul 27;26(15).
    PMID: 34361694 DOI: 10.3390/molecules26154540
    Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class of repeat proteins-designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as inhibitors. The structural basis of ERK2-DARPin interactions based on molecular dynamics (MD) simulations was studied. The information was then used to predict stabilizing mutations employing a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence (DARPin E40) based on the associated energy and key residues involved in protein-protein interaction. MD simulations and analysis of the data obtained on these mutations supported our predictions.
    Matched MeSH terms: Ankyrins/genetics; Ankyrins/metabolism*; Ankyrins/chemistry
  5. Lim CH, Zain SM, Reynolds GP, Zain MA, Roffeei SN, Zainal NZ, et al.
    PMID: 24914473 DOI: 10.1016/j.pnpbp.2014.05.017
    Recent studies have shown that bipolar disorder (BPD) and schizophrenia (SZ) share some common genetic risk factors. This study aimed to examine the association between candidate single nucleotide polymorphisms (SNPs) identified from genome-wide association studies (GWAS) and risk of BPD and SZ. A total of 715 patients (244 BPD and 471 SZ) and 593 controls were genotyped using the Sequenom MassARRAY platform. We showed a positive association between LMAN2L (rs6746896) and risk of both BPD and SZ in a pooled population (P-value=0.001 and 0.009, respectively). Following stratification by ethnicity, variants of the ANK3 gene (rs1938516 and rs10994336) were found to be associated with BPD in Malays (P-value=0.001 and 0.006, respectively). Furthermore, an association exists between another variant of LMAN2L (rs2271893) and SZ in the Malay and Indian ethnic groups (P-value=0.003 and 0.002, respectively). Gene-gene interaction analysis revealed a significant interaction between the ANK3 and LMAN2L genes (empirical P=0.0107). Significant differences were shown between patients and controls for two haplotype frequencies of LMAN2L: GA (P=0.015 and P=0.010, for BPD and SZ, respectively) and GG (P=0.013 for BPD). Our study showed a significant association between LMAN2L and risk of both BPD and SZ.
    Matched MeSH terms: Ankyrins/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links