Displaying all 9 publications

Abstract:
Sort:
  1. Taylor PW, Arnet I, Fischer A, Simpson IN
    Obes Facts, 2010 Aug;3(4):231-7.
    PMID: 20823686 DOI: 10.1159/000319450
    OBJECTIVE: To compare the pharmaceutical quality of Xenical (chemically produced orlistat) with nine generic products, each produced by fermentation processes.

    METHODS: Xenical 120 mg capsules (Roche, Basel, Switzerland) were used as reference material. Generic products were from India, Malaysia, Argentina, Philippines, Uruguay, and Taiwan. Colour, melting temperature, crystalline form, particle size, capsule fill mass, active pharmaceutical ingredient content, amount of impurities, and dissolution were compared. Standard physical and chemical laboratory tests were those developed by Roche for Xenical.

    RESULTS: All nine generic products failed the Xenical specifications in four or more tests, and two generic products failed in seven tests. A failure common to all generic products was the amount of impurities present, mostly due to different by-products, including side-chain homologues not present in Xenical. Some impurities were unidentified. Two generic products tested failed the dissolution test, one product formed a capsule-shaped agglomerate on storage and resulted in poor (=15%) dissolution. Six generic products were powder formulations.

    CONCLUSIONS: All tested generic orlistat products were pharmaceutically inferior to Xenical. The high levels of impurities in generic orlistat products are a major safety and tolerability concern.

    Matched MeSH terms: Anti-Obesity Agents/chemistry
  2. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  3. Duangjai A, Nuengchamnong N, Suphrom N, Trisat K, Limpeanchob N, Saokaew S
    Kobe J Med Sci, 2018 Oct 15;64(3):E84-E92.
    PMID: 30666038
    This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  4. Alias AHD, Shafie MH
    Food Chem, 2024 Dec 01;460(Pt 1):140533.
    PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533
    This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  5. Atangwho IJ, Egbung GE, Ahmad M, Yam MF, Asmawi MZ
    Food Chem, 2013 Dec 15;141(4):3428-34.
    PMID: 23993503 DOI: 10.1016/j.foodchem.2013.06.047
    The antioxidant and anti-diabetic properties of the sequential extracts of Vernonia amygdalina based on the chemical composition of the most effective anti-diabetic extract were studied. Using DPPH and ABTS radical scavenging as well as FRAP assays, the extracts showed a consistent dose-dependent trend of potent antioxidant activity in the following solvents: water extract>methanol extract>chloroform extract>and petroleum ether extracts. In the oral glucose tolerance test, the chloroform extract exerted the highest response (33.3%), similar to metformin (27.2%), after 2h compared to the control (50.8%, P<0.05). After a 14-day administration in diabetic rats, the chloroform extract recorded the highest blood (23.5%) and serum (21.4%) glucose-lowering effects (P<0.05). GC-MS analysis of the chloroform extract revealed high levels of linoleic acid (4.72%), α-linolenic acid (10.8%) and phytols (12.0%), as well as other compounds.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  6. Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, et al.
    J Nat Med, 2012 Apr;66(2):333-42.
    PMID: 21989999 DOI: 10.1007/s11418-011-0597-8
    Obesity and overweight are associated with atherosclerosis, fatty liver, hyperlipemia, diabetes mellitus, and various types of cancer. The global prevalence of overweight and obesity has reached epidemic proportions. Here, we investigated the effect of Tamarindus indica pulp aqueous extract (TIE) in diet-induced obese Sprague-Dawley rats. The animals were divided into five groups and labeled as follows: the normal control (NC) group received normal diet; the positive control (PC) group received high-fat diet; and the TIE 5, 25, and 50 groups, after the induction of obesity via a high-fat diet, received TIE at 5, 25, or 50 mg/kg orally for 10 weeks. It was observed that TIE decreased the levels of plasma total cholesterol, low-density lipoprotein (LDL), and triglyceride, and increased high-density lipoprotein (HDL), with the concomitant reduction of body weight. Moreover, TIE decreased plasma leptin and reduced fatty acid synthase (FAS) activity and enhanced the efficiency of the antioxidant defense system. TIE exhibits antiobesity effects, as indicated by a significant reduction in adipose tissue weights, as well as lowering the degree of hepatic steatosis in the obesity-induced rats. The extract possesses hepatoprotective activity, as it reversed the plasma liver enzymes level elevation prior to the high-fat diet. In conclusion, TIE improved obesity-related parameters in blood, liver, and adipose tissue in a rat model and suppressed obesity induced by a high-fat diet, possibly by regulating lipid metabolism and lowering plasma leptin and FAS levels. A dose-dependant effect of TIE is detected, where TIE at 50 mg/kg showed the most prominent effect, followed by TIE at 25 mg/kg and, subsequently, 5 mg/kg.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  7. Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ
    Nutrients, 2019 May 21;11(5).
    PMID: 31117266 DOI: 10.3390/nu11051133
    Kappaphycus is a commercially important edible red alga widely cultivated for carrageenan production. Here, we aimed to investigate the anti-obesity mechanism of Kappaphycusalvarezii by comparing the effects of whole seaweed (T), extracted native κ-carrageenan (CGN), and the leftover fraction sans-carrageenan (SCGN) supplementations (5%, w/w) on diet-induced obese C57BL/6J mice. A high-fat diet induced both a raised body fat percentage and serum cholesterol level, increased adipocytes size, abnormal levels of adipocytokines, and promoted gut dysbiosis. Our results showed that, overall, both CGN and SCGN were more effective in reversing obesity and related metabolic syndromes to normal levels than T. Furthermore, these findings suggested that CGN- and SCGN-modulated gut dysbiosis induced by a high-fat diet, which may play an influencing role in adiponectin dysregulation. Our data also showed some evidence that CGN and SCGN have distinct effects on selected genes involved in lipid metabolism. In conclusion, both κ-carrageenan and SCGN have novel anti-obesity potential with possible different mechanisms of action.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  8. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
  9. Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J
    Mol Biol Rep, 2021 Jan;48(1):743-761.
    PMID: 33275195 DOI: 10.1007/s11033-020-06036-8
    Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
    Matched MeSH terms: Anti-Obesity Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links