Affiliations 

  • 1 Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
  • 2 Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.. Electronic address: hakiminshafie@usm.my
Food Chem, 2024 Dec 01;460(Pt 1):140533.
PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533

Abstract

This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications