Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Ramli SB, Ravoof TB, Tahir MI, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jul 1;71(Pt 7):o475-6.
    PMID: 26279916 DOI: 10.1107/S205698901501107X
    In the title compound, C15H16N2S3 {systematic name: [({[(4-methyl-phen-yl)meth-yl]sulfan-yl}methane-thio-yl)amino][1-(thio-phen-2-yl)ethyl-idene]amine}, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0061 Å) and forms dihedral angles of 7.39 (10) and 64.91 (5)° with the thienyl and p-tolyl rings, respectively; the dihedral angle between these rings is 57.52 (6)°. The non-thione S atoms are syn, and with respect to the thione S atom, the benzyl group is anti. In the crystal, centrosymmetrically related mol-ecules self-associate via eight-membered {⋯HNCS}2 synthons. The dimeric aggregates stack along the a axis and are are consolidated into a three-dimensional architecture via methyl-C-H⋯π(benzene) and benzene-C-H⋯π(thien-yl) inter-actions.
    Matched MeSH terms: Benzene
  2. Tagg T, McAdam CJ, Robinson BH, Simpson J
    Acta Crystallogr E Crystallogr Commun, 2015 Jul 1;71(Pt 7):816-20.
    PMID: 26279875 DOI: 10.1107/S2056989015011494
    The title compound, C16H10, crystallizes with four unique mol-ecules, designated 1-4, in the asymmetric unit of the monoclinic unit cell. None of the mol-ecules is planar, with the benzene rings of mol-ecules 1-4 inclined to one another at angles of 42.41 (4), 24.07 (6), 42.59 (4) and 46.88 (4)°, respectively. In the crystal, weak C-H⋯π(ring) interactions, augmented by even weaker C C-H⋯π(alkyne) contacts, generate a three-dimensional network structure with inter-linked columns of mol-ecules formed along the c-axis direction.
    Matched MeSH terms: Benzene
  3. Kulkarni AD, Rahman ML, Mohd Yusoff M, Kwong HC, Quah CK
    Acta Crystallogr E Crystallogr Commun, 2015 Nov 1;71(Pt 11):1411-3.
    PMID: 26594522 DOI: 10.1107/S2056989015020101
    The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, mol-ecules are linked by pairs of N-H⋯S hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif. The dimers are linked via C-H⋯π inter-actions, forming chains along [1-10]. The chains are linked via π-π inter-actions involving inversion-related triazole rings [centroid-centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.
    Matched MeSH terms: Benzene
  4. Shamsudin N, Tan AL, Wimmer FL, Young DJ, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Sep 1;71(Pt 9):1026-31.
    PMID: 26396840 DOI: 10.1107/S2056989015014280
    The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.
    Matched MeSH terms: Benzene
  5. Tan MY, Crouse KA, Ravoof TB, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1047-8.
    PMID: 26870491 DOI: 10.1107/S2056989015023531
    In the title thio-semicarbazone compound, C18H18ClN3S, the CN3S residue is almost planar (r.m.s. deviation = 0.0031 Å) and forms dihedral angles of 65.99 (7) and 34.60 (10)° with the phenyl and chloro-benzene rings, respectively; the dihedral angle between the aromatic rings is 85.13 (8)°. The conformation about the C=N bond is Z, and that about the C=C bonds is E. The imine N and ethyl N atoms are syn and are linked by an eth-yl-imine N-H⋯N hydrogen bond. This H atom also forms an inter-molecular hydrogen bond to the thione S atom, resulting in a supra-molecular helical chain propagating along the b axis. The chains are consolidated into a three-dimensional architecture by phenyl-C-H⋯Cl contacts and weak π-π inter-actions between centrosymmetrically related chloro-benzene rings [inter-centroid distance = 3.9127 (15) Å].
    Matched MeSH terms: Benzene
  6. Adam F, Samshuddin S, Ameram N, Subramaya, Samartha L
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1031-2.
    PMID: 26870482 DOI: 10.1107/S2056989015023294
    The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl rings, respectively. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules into supra-molecular tubes along the b axis.
    Matched MeSH terms: Benzene
  7. Eryanti Y, Zamri A, Herlina T, Supratman U, Rosli MM, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 01;71(Pt 12):1488-92.
    PMID: 26870411 DOI: 10.1107/S2056989015020976
    The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
    Matched MeSH terms: Benzene
  8. Adam F, Arafath MA, Haque RA, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Nov 1;71(Pt 11):o819.
    PMID: 26594544 DOI: 10.1107/S2056989015018113
    The mol-ecule of the title Schiff base compound, C14H14N2O2, displays an E conformation with respect the imine C=N double bond. The mol-ecule is approximately planar, with the dihedral angle formed by the planes of the pyridine and benzene rings being 5.72 (6)°. There is an intra-molecular hydrogen bond involving the phenolic H and imine N atoms.
    Matched MeSH terms: Benzene
  9. Zukerman-Schpector J, Prado KE, Name LL, Cella R, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):918-924.
    PMID: 28638659 DOI: 10.1107/S2056989017007605
    The title organoselenium compound, C19H13ClO3Se {systematic name: 2-[(4-chloro-phen-yl)selan-yl]-2H,3H,4H,5H,6H-naphtho-[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methyl-ene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the mol-ecule is 9.96 (9)° and indicates a step-like conformation. An intra-molecular Se⋯O inter-action of 2.8122 (13) Å is noted. In the crystal, π-π contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chloro-benzene rings [inter-centroid distance = 3.7715 (13) Å], along with C-Cl⋯π(chloro-benzene) contacts, lead to supra-molecular layers parallel to the ab plane, which are connected into a three-dimensional architecture via methyl-ene-C-H⋯O(carbon-yl) inter-actions. The contributions of these and other weak contacts to the Hirshfeld surface is described.
    Matched MeSH terms: Benzene
  10. Sim A, Chidan Kumar CS, Kwong HC, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):896-900.
    PMID: 28638654 DOI: 10.1107/S2056989017007460
    In the title compounds, (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(2-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (I), (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (II) and (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one], C28H26O6 (III), the asymmetric unit consists of a half-mol-ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol-ecules are linked by pairs of C-H⋯π inter-actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C-H⋯O hydrogen bonds, forming R2(2)(16) and R2(2)(14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.
    Matched MeSH terms: Benzene
  11. Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):630-636.
    PMID: 28435737 DOI: 10.1107/S2056989017004790
    In the title isonicotinohydrazide hydrate, C14H12BrN3O2·H2O {systematic name: N'-[(1E)-1-(5-bromo-2-hy-droxy-phen-yl)ethyl-idene]pyridine-4-carbohydrazide monohydrate}, the central CN2O region of the organic mol-ecule is planar and the conformation about the imine-C=N bond is E. While an intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond is evident, the dihedral angle between the central residue and the benzene rings is 48.99 (9)°. Overall, the mol-ecule is twisted, as seen in the dihedral angle of 71.79 (6)° between the outer rings. In the crystal, hydrogen-bonding inter-actions, i.e. hydrazide-N-H⋯O(water), water-O-H⋯O(carbon-yl) and water-O-H⋯N(pyrid-yl), lead to supra-molecular ribbons along the a-axis direction. Connections between these, leading to a three-dimensional architecture, are mediated by Br⋯Br halogen bonding [3.5366 (3) Å], pyridyl-C-H⋯O(carbon-yl) as well as weak π-π inter-actions [inter-centroid separation between benzene rings = 3.9315 (12) Å]. The Hirshfeld surface analysis reveals the importance of hydrogen atoms in the supra-molecular connectivity as well as the influence of the Br⋯Br halogen bonding.
    Matched MeSH terms: Benzene
  12. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):579-585.
    PMID: 28435725 DOI: 10.1107/S2056989017004352
    In the anion of the title salt hydrate, H5N2(+)·C7H5N2O4(-)·2H2O, the carboxyl-ate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10) and 8.04 (9)°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15)°. An intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is noted. The main feature of the crystal packing is the formation of a supra-molecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O-H⋯O(carboxyl-ate) hydrogen bonds and comprising alternating twelve-membered {⋯OCO⋯HOH}2 and eight-membered {⋯O⋯HOH}2 synthons. Each ammonium-N-H atom forms a charge-assisted hydrogen bond to a water mol-ecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N-H atoms form hydrogen bonds to carboxyl-ate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O⋯H/H⋯O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H⋯H contacts (32.4%).
    Matched MeSH terms: Benzene
  13. Jeevaraj M, Sivajeyanthi P, Edison B, Thanigaimani K, Balasubramani K, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1595-1598.
    PMID: 29250389 DOI: 10.1107/S2056989017013950
    In the title mol-ecular salt, 2C6H10N3O+·C8H4O42-, the N atom of each of the two 2-amino-4-meth-oxy-6-methyl-pyrimidine mol-ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N-H⋯O(carboxyl-ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N-H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N-H⋯O hydrogen-bonding inter-actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π-π stacking inter-actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter-molecular inter-actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.
    Matched MeSH terms: Benzene
  14. Rahman WSKA, Ahmad J, Halim SNA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1363-1367.
    PMID: 28932475 DOI: 10.1107/S2056989017011677
    The full mol-ecule of the binuclear title compound, [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2], is generated by the application of a centre of inversion located at the middle of the central CH2-CH2 bond of the adipate dianion; the latter chelates a CdII atom at each end. Along with two carboxyl-ate-O atoms, the CdII ion is coordinated by the two N atoms of the chelating benzene-1,2-di-amine ligand, a Cl- anion and an aqua ligand to define a distorted octa-hedral CdClN2O3 coordination geometry with the monodentate ligands being mutually cis. The disparity in the Cd-N bond lengths is related to the relative trans effect exerted by the Cd-O bonds formed by the carboxyl-ate-O and aqua-O atoms. The packing features water-O-H⋯O(carboxyl-ate) and benzene-1,2-di-amine-N-H⋯Cl hydrogen bonds, leading to layers that stack along the a-axis direction. The lack of directional inter-actions between the layers is confirmed by a Hirshfeld surface analysis.
    Matched MeSH terms: Benzene
  15. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Apr 01;75(Pt 4):475-481.
    PMID: 31161060 DOI: 10.1107/S205698901900375X
    The asymmetric unit of the three-component title compound, 2,2'-di-thiodi-benzoic acid-2-chloro-benzoic acid-N,N-di-methyl-formamide (1/1/1), C14H10O4S2·C7H5ClO2·C3H7NO, contains a mol-ecule each of 2,2'-di-thiodi-benzoic acid (DTBA), 2-chloro-benzoic acid (2CBA) and di-methyl-formamide (DMF). The DTBA mol-ecule is twisted [the C-S-S-C torsion angle is 88.37 (17)°] and each carb-oxy-lic group is slightly twisted from the benzene ring to which it is connected [CO2/C6 dihedral angles = 7.6 (3) and 12.5 (3)°]. A small twist is evident in the mol-ecule of 2CBA [CO2/C6 dihedral angle = 4.4 (4)°]. In the crystal, the three mol-ecules are connected by hydrogen bonds with the two carb-oxy-lic acid residues derived from DTBA and 2CBA forming a non-symmetric eight-membered {⋯HOCO}2 synthon, and the second carb-oxy-lic acid of DTBA linked to the DMF mol-ecule via a seven-membered {⋯HOCO⋯HCO} heterosynthon. The three-mol-ecule aggregates are connected into a supra-molecular chain along the a axis via DTBA-C-H⋯O(hydroxyl-2CBA), 2CBA-C-H⋯O(hydroxyl-DTBA) and DTBA-C-H⋯S(DTBA) inter-actions. Supra-molecular layers in the ab plane are formed as the chains are linked via DMF-C-H⋯S(DTBA) contacts, and these inter-digitate along the c-axis direction without specific points of contact between them. A Hirshfeld surface analysis points to additional but, weak contacts to stabilize the three-dimensional architecture: DTBA-C=O⋯H(phenyl-DTBA), 2CBA-Cl⋯H(phenyl-DTBA), as well as a π-π contact between the delocalized eight-membered {⋯HOC=O}2 carb-oxy-lic dimer and the phenyl ring of 2CBA. The latter was confirmed by electrostatic potential (ESP) mapping.
    Matched MeSH terms: Benzene
  16. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):1-7.
    PMID: 30713723 DOI: 10.1107/S2056989018017097
    The asymmetric unit of the title 1:2 co-crystal, C14H10O4S2·2C7H6O2, comprises half a mol-ecule of di-thiodi-benzoic acid [systematic name: 2-[(2-carb-oxy-phen-yl)disulfan-yl]benzoic acid, DTBA], as the mol-ecule is located about a twofold axis of symmetry, and a mol-ecule of benzoic acid (BA). The DTBA mol-ecule is twisted about the di-sulfide bond [the C-S-S-C torsion angle is -83.19 (8)°] resulting in a near perpendicular relationship between the benzene rings [dihedral angle = 71.19 (4)°]. The carb-oxy-lic acid group is almost co-planar with the benzene ring to which it is bonded [dihedral angle = 4.82 (12)°]. A similar near co-planar relationship pertains for the BA mol-ecule [dihedral angle = 3.65 (15)°]. Three-mol-ecule aggregates are formed in the crystal whereby two BA mol-ecules are connected to a DTBA mol-ecule via hy-droxy-O-H⋯O(hydroxy) hydrogen bonds and eight-membered {⋯HOC=O}2 synthons. These are connected into a supra-molecular layer in the ab plane through C-H⋯O inter-actions. The inter-actions between layers to consolidate the three-dimensional architecture are π-π stacking inter-actions between DTBA and BA rings [inter-centroid separation = 3.8093 (10) Å] and parallel DTBA-hy-droxy-O⋯π(BA) contacts [O⋯ring centroid separation = 3.9049 (14) Å]. The importance of the specified inter-actions as well as other weaker contacts, e.g. π-π and C-H⋯S, are indicated in the analysis of the calculated Hirshfeld surface and inter-action energies.
    Matched MeSH terms: Benzene
  17. Wong QA, Chia TS, Kwong HC, Chidan Kumar CS, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):53-57.
    PMID: 30713733 DOI: 10.1107/S2056989018017450
    The mol-ecular structure of the title chalcone derivative, C15H10FNO3, is nearly planar and the mol-ecule adopts a trans configuration with respect to the C=C double bond. The nitro group is nearly coplanar with the attached benzene ring, which is nearly parallel to the second benzene ring. In the crystal, mol-ecules are connected by pairs of weak inter-molecular C-H⋯O hydrogen bonds into inversion dimers. The dimers are further linked by another C-H⋯O hydrogen bond and a C-H⋯F hydrogen bond into sheets parallel to (104). π-π inter-actions occur between the sheets, with a centroid-centroid distance of 3.8860 (11) Å. Hirshfeld surface analysis was used to investigate and qu-antify the inter-molecular inter-actions.
    Matched MeSH terms: Benzene
  18. Jotani MM, Lee SM, Lo KM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 May 01;75(Pt 5):624-631.
    PMID: 31110800 DOI: 10.1107/S2056989019004742
    The crystal and mol-ecular structures of C14H12Cl2, (I), and C14H12Br2, (II), are described. The asymmetric unit of (I) comprises two independent mol-ecules, A and B, each disposed about a centre of inversion. Each mol-ecule approximates mirror symmetry [the Cb-Cb-Ce-Ce torsion angles = -83.46 (19) and 95.17 (17)° for A, and -83.7 (2) and 94.75 (19)° for B; b = benzene and e = ethyl-ene]. By contrast, the mol-ecule in (II) is twisted, as seen in the dihedral angle of 59.29 (11)° between the benzene rings cf. 0° in (I). The mol-ecular packing of (I) features benzene-C-H⋯π(benzene) and Cl⋯Cl contacts that lead to an open three-dimensional (3D) architecture that enables twofold 3D-3D inter-penetration. The presence of benzene-C-H⋯π(benzene) and Br⋯Br contacts in the crystal of (II) consolidate the 3D architecture. The analysis of the calculated Hirshfeld surfaces confirm the influence of the benzene-C-H⋯π(benzene) and X⋯X contacts on the mol-ecular packing and show that, to a first approximation, H⋯H, C⋯H/H⋯C and C⋯X/X⋯C contacts dominate the packing, each contributing about 30% to the overall surface in each of (I) and (II). The analysis also clearly differentiates between the A and B mol-ecules of (I).
    Matched MeSH terms: Benzene
  19. Adam F, Arafath MA, Rosenani AH, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o971-2.
    PMID: 26870556 DOI: 10.1107/S2056989015021180
    In the mol-ecule of the title compound, C21H17N3O2, the 5,6-di-hydro-benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra-molecular O-H⋯O hydrogen bond is present. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming chains running parallel to [10-1].
    Matched MeSH terms: Benzene
  20. Hassan NH, Abdullah AA, Arshad S, Khalib NC, Razak IA
    Acta Crystallogr E Crystallogr Commun, 2016 May 1;72(Pt 5):716-9.
    PMID: 27308026 DOI: 10.1107/S2056989016006526
    In the title chalcone derivative, C16H11ClF2O2, the enone group adopts an E conformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intra-molecular C-H⋯F hydrogen bond closes an S(6) ring. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯O hydrogen bonds and aromatic π-π stacking inter-actions are also observed [centroid-centroid separation = 3.5629 (18) Å]. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.
    Matched MeSH terms: Benzene
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links