Displaying all 5 publications

Abstract:
Sort:
  1. Zukerman-Schpector J, Madureira LS, Wulf GD, Stefani HA, Vasconcelos SN, Ng SW, et al.
    Molecules, 2014;19(2):1990-2003.
    PMID: 24531216 DOI: 10.3390/molecules19021990
    Two independent molecules that differ in terms of rotation about the central S-N bond comprise the asymmetric unit of the title compound 1. The molecules have a V-shape with the dihedral angles between the fused ring system and benzene ring being 79.08(6)° and 72.83(5)°, respectively. The packing is mostly driven by p···p interactions occurring between the tolyl ring of one molecule and the C6 ring of the indole fused ring system of the other. DFT and IRC calculations for these and related 1-(arylsulfonyl)indole molecules showed that the rotational barrier about the S-N bond between conformers is within the 2.5-5.5 kcal/mol range. Crystal data for C16H13NO3S (1): Mr = 299.33, space group Pna21, a = 19.6152(4) Å, b = 11.2736(4) Å, c = 12.6334(3) Å, V = 2793.67(13) Å3, Z = 8, Z' = 2, R = 0.034.
    Matched MeSH terms: Benzene Derivatives/chemistry*
  2. Cheong MY, Ariffin A, Khan MN
    J Phys Chem B, 2007 Oct 25;111(42):12185-94.
    PMID: 17914797
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-benzylphthalimide (1) show a nonlinear decrease with the increase in [C(m)E(n)]T (total concentration of Brij 58, m = 16, n = 20 and Brij 56, m = 16, n = 10) at constant [CH(3)CN] and [NaOH]. These nonionic micellar effects, within the certain typical reaction conditions, have been explained in terms of the pseudophase micellar (PM) model. The values of micellar binding constants (KS) of 1 are 1.04 x 10(3) M(-1) (at 1.0 x 10(-3) M NaOH) and 1.08 x 10(3) M(-1) (at 2.0 x 10(-3) M NaOH) for C(16)E(20) as well as 600 M(-1) (at 7.6 x 10(-4) M NaOH) and 670 M(-1) (at 1.0 x 10(-3) M NaOH) for C(16)E(10) micelles. The pseudo-first-order rate constants (kM) for hydrolysis of 1 in C(16)E(20) micellar pseudophase are approximately 90-fold smaller than those (kW) in water phase. The values of kM for hydrolysis of 1 in C(16)E(10) micelles are almost zero. Kinetic coupled with UV spectral data reveals significant irreversible nonionic micellar binding of 1 molecules in the micellar environment of nearly zero hydroxide ion concentration at >or=0.14 M C(16)E(20) and 1.0 x 10(-3) M NaOH while such observations could not be detected at or=3 x 10(-3) M C(16)E(10) and 7.6 x 10(-4) M NaOH, while the rate of hydrolysis of 1 is completely ceased at >or=0.05 M C(16)E(10) and 7.6 x 10(-4) M NaOH. The rate of hydrolysis of 1 at 5.0 x 10(-2) and 8.8 x 10(-2) M C(16)E(10) and 1.0 x 10(-3) M NaOH reveals the formation of presumably phthalic anhydride, whereas such observation was not observed in the C(16)E(20) micellar system under similar experimental conditions.
    Matched MeSH terms: Benzene Derivatives/chemistry*
  3. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiasl S, Dehzangi A
    Int J Mol Sci, 2012;13(4):4860-72.
    PMID: 22606014 DOI: 10.3390/ijms13044860
    Polyimide/SiO(2) composite films were prepared from tetraethoxysilane (TEOS) and poly(amic acid) (PAA) based on aromatic diamine (4-aminophenyl sulfone) (4-APS) and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride) (BTDA) via a sol-gel process in N-methyl-2-pyrrolidinone (NMP). The prepared polyimide/SiO(2) composite films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA) and the formation of SiO(2) particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO(2) particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO(2) composite films were investigated using TGA in N(2) atmosphere. The activation energy of the solid-state process was calculated using Flynn-Wall-Ozawa's method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.
    Matched MeSH terms: Benzene Derivatives/chemistry
  4. Alkhadher SAA, Zakaria MP, Yusoff FM, Kannan N, Suratman S, Keshavarzifard M, et al.
    Mar Pollut Bull, 2015 Dec 15;101(1):397-403.
    PMID: 26478457 DOI: 10.1016/j.marpolbul.2015.10.011
    Sewage pollution is one of major concerns of coastal and shoreline settlements in Southeast Asia, especially Brunei. The distribution and sources of LABs as sewage molecular markers were evaluated in surface sediments collected from Brunei Bay. The samples were extracted, fractionated and analyzed using gas chromatography- mass spectrometry (GC-MS). LABs concentrations ranged from 7.1 to 41.3 ng g(-1) dry weight (dw) in surficial sediments from Brunei Bay. The study results showed LABs concentrations variably due to the LABs intensity and anthropogenic influence along Brunei Bay in recent years. The ratio of Internal to External isomers (I/E ratio) of LABs in sediment samples from Brunei Bay ranged from 0.56 to 2.17 along Brunei Bay stations, indicating that the study areas were receiving primary and secondary effluents. This is the first study carried out to assess the distribution and sources of LABs in surface sediments from Brunei Bay, Brunei.
    Matched MeSH terms: Benzene Derivatives/chemistry
  5. Lukman SK, Saidin S
    J Biomed Mater Res A, 2020 05;108(5):1171-1185.
    PMID: 31994824 DOI: 10.1002/jbm.a.36891
    Even though drug-eluting stent (DES) has prominently reduced restenosis, however, its complication of delayed endothelialization has caused chronic side effect. A coating of ginseng-based biodegradable polymer could address this issue due to its specific therapeutic values. However, deposition of this type of stable coating on metallic implant often scarce. Therefore, in this study, different polyaniline (PANI) emeraldine compositions were adopted to electrodeposit ginsenoside encapsulated poly(lactic-co-glycolic acid) microcapsules coating. The coating surfaces were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, contact angle, and atomic force microscopy instruments. A month coating stability was then investigated with an evaluation of in vitro human umbilical vein endothelial cell analyses consisted of cytotoxicity and cells attachment assessments. The 1.5 mg PANI emeraldine has assisted the formation of stable, uniform, and rounded microcapsules coating with appropriate wettability and roughness. Less than 1.5 mg PANI emeraldine was not enough to drive the formation of microcapsules coating while greater than 1.5 mg caused the deposition of melted microcapsules. The similar coating also has promoted greater cells proliferation and attachment compared to other coating variation. Therefore, the utilization of electrodeposition to deposit a drug-based polymer coating could be implemented to develop DES, in accordance to stent implantation which ultimately aims for enrich endothelialization.
    Matched MeSH terms: Benzene Derivatives/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links