Displaying all 5 publications

Abstract:
Sort:
  1. Shuhaimi-Othman M, Pascoe D, Borgmann U, Norwood WP
    Environ Monit Assess, 2006 Jun;117(1-3):27-44.
    PMID: 16917696
    Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.
    Matched MeSH terms: Crustacea/chemistry*
  2. Ngah CW, Yahya MA
    Food Chem, 2012 Oct 15;134(4):2406-10.
    PMID: 23442702 DOI: 10.1016/j.foodchem.2012.04.032
    The microwave digestion method was developed and verified for the determination of arsenic in shrimp paste samples. Experimental design for five factors (HNO(3) and H(2)O(2) volumes, sample weight, microwave power and digestion time) were used for the optimisation of sample digestion. For this purpose, two level half factorial design, which involves 16 experiments, was adopted. The concentration of arsenic was analysed by graphite furnace atomic absorption spectrometry. Design Expert® 7.0 software was used to interpret all data obtained. The combination of 2 mL HNO(3) and 1 mL H(2)O(2) volumes, 0.1g sample weight, 1400 W power and 5 min digestion time was found to be the optimum parameters required to digest the shrimp paste samples. Tests with spiked samples presented good recoveries with relative standard deviations between 0.32% and 5.35%.
    Matched MeSH terms: Crustacea/chemistry*
  3. Yusof AM, Rahman NA, Wood AK
    Biol Trace Elem Res, 1994;43-45:239-49.
    PMID: 7710833
    Trace elements, such as As, Co, Cr, Hg, Sb, and Zn, were determined by neutron activation analysis (NAA), whereas Cd, Cu, and Pb were determined by graphite furnace atomic absorption spectroscopy (GFAAS) in clam, crab, prawn, swamp cerith, and mussel samples after digestion by microwave heating under controlled conditions before eluting the solutions through a column of a chelating resin, Chelex-100. The standard used in the determination of percentage volatile elements retained by microwave digestion and also in the activation process was Lobster Hepatopancreas TORT-1, whereas known mixed standards were prepared from nitrate salts to determine the efficiency of the separation procedure at a controlled pH. Mercury and lead detected in crabs exceeded the maximum permissible level. Some species also showed a high affinity toward certain elements, and their levels of accumulation in the tissues of these species corresponded with the concentration of these elements in sediments, especially at sites in the vicinity of an industrial zone.
    Matched MeSH terms: Crustacea/chemistry*
  4. Ahmad NI, Noh MF, Mahiyuddin WR, Jaafar H, Ishak I, Azmi WN, et al.
    Environ Sci Pollut Res Int, 2015 Sep;22(17):12960-74.
    PMID: 25916470 DOI: 10.1007/s11356-015-4415-9
    This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P > 0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide.
    Matched MeSH terms: Crustacea/chemistry*
  5. Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A
    Biomacromolecules, 2020 Jan 13;21(1):30-55.
    PMID: 31592650 DOI: 10.1021/acs.biomac.9b01141
    Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
    Matched MeSH terms: Crustacea/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links