Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. NUR FIKRIAH HASHIM, NURAQILAH MOHD ZAINAL, NURAIN JAMIL, NURUL NASUHA MOHD NOR, SURIANI MAT JUSOH
    MyJurnal
    Nowadays, Kenaf fiber is sustainably useful in marine structures and has become one of the materials that may be high in demand as it is light, biodegradable and environmental friendly. This study investigates the effect of fiber percentage on compressive strength of fiber reinforced concrete (FRC) and the relationship between compressive strength and time of FRC immersion in seawater. FRC concrete cubes were prepared using four different percentage of fiber (0%, 1.5%, 3.0% and 4.5%). These FRC were immersed in seawater for 7, 14 and 21 days for three consecutive weeks. Based on the experiment, it was found that there was improvement in compressive strength of FRC when compared to plain cement concrete. The results showedthat 3.0% of KF to cement matrix concrete determined the highest compressive strength of 205.43 Pa while 0% of KF fiber to cement concrete matrix (control specimen) showed the lowest compressive strength of 158.28 Pa. Also the addition of Kenaf fiber to cement concrete decreased the seawater absorption more than concrete with absolutely 0% of KF fiber to cement concrete (control specimen). In conclusion, the results did show significant improvement and a consistent trend on strength with the addition of FRC. This study also revealed that the percentage of water absorption was on the increase for 0, 7 and 14 days and become constant after day 21. This is due to manufacturing defects that occurred which block the water from entering the material and making the material absorb less water.
    Matched MeSH terms: Dental Materials
  2. Balagopal S, Nekkanti S, Kaur K
    J Contemp Dent Pract, 2021 Feb 01;22(2):134-139.
    PMID: 34257171
    AIM: The aim of this study was to examine and compare the flexural strength, shear bond strength, and fluoride-releasing ability of glass ionomer cement (GIC), Fuji IX GIC®, and a new alkasite filling material, Cention N®.

    MATERIAL AND METHODS: The materials were divided into two groups, Fuji IX GIC® (n = 30) and Cention N® (n = 30) and further divided (n = 10) to test three parameters, the fluoride releasing ability, flexural strength, and shear bond strength. Fluoride release was checked using fluoride ion-selective electrode, and flexural strength and shear bond strength were tested using universal testing machine (Intron 3366, UK).

    RESULTS: Fluoride release of Fuji IX GIC® was significantly higher compared to that of control Cention N® over a period of 21 days. Flexural strength of Cention N® was significantly higher compared to Fuji IX GIC® and there were no significant differences in shear bond strength of both the materials.

    CONCLUSION: From the results of the study, it can be concluded that Cention N® is an alkasite filling material for the complete and permanent replacement of tooth structure in posterior teeth and can be a good alternative when compared to GICs on the basis of their superior mechanical properties.

    CLINICAL SIGNIFICANCE: Cention N® is an innovative filling material for the complete and permanent replacement of tooth structure in posterior teeth and can be a good alternative when compared to GICs on the basis of their superior mechanical properties.

    Matched MeSH terms: Dental Materials
  3. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Dental Materials
  4. Kannaiyan K, Rathod A, Bhushan P, Mailankote S, Almuraikhi T, Daghriri A
    J Contemp Dent Pract, 2024 Mar 19;25(3):241-244.
    PMID: 38690697 DOI: 10.5005/jp-journals-10024-3612
    AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods.

    MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed.

    RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01.

    CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin.

    CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.

    Matched MeSH terms: Dental Materials/chemistry
  5. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Dental Materials/chemistry
  6. Vohra F, Al-Kheraif AA, Ab Ghani SM, Abu Hassan MI, Alnassar T, Javed F
    J Prosthet Dent, 2015 Sep;114(3):351-7.
    PMID: 26047803 DOI: 10.1016/j.prosdent.2015.03.016
    STATEMENT OF PROBLEM: Zirconia implants have been used for oral rehabilitation; however, evidence of their ability to maintain crestal bone and periimplant soft tissue health is not clear.

    PURPOSE: The purpose of this systematic review was to evaluate crestal bone loss (CBL) around zirconia dental implants and clinical periimplant inflammatory parameters.

    MATERIAL AND METHODS: The focus question addressed was, "Do zirconia implants maintain crestal bone levels and periimplant soft tissue health?" Databases were searched for articles from 1977 through September 2014 with different combinations of the following MeSH terms: "dental implants," "zirconium," "alveolar bone loss," "periodontal attachment loss," "periodontal pocket," "periodontal index." Letters to the editor, case reports, commentaries, review articles, and articles published in languages other than English were excluded.

    RESULTS: Thirteen clinical studies were included. In 8 of the studies, the CBL around zirconia implants was comparable between baseline and follow-up. In the other 5 studies, the CBL around zirconia implants was significantly higher at follow-up. Among the studies that used titanium implants as controls, 2 studies showed significantly higher CBL around zirconia implants, and in 1 study, the CBL around zirconia and titanium implants was comparable. The reported implant survival rates for zirconia implants ranged between 67.6% and 100%. Eleven studies selectively reported the periimplant inflammatory parameters.

    CONCLUSIONS: Because of the variations in study design and methodology, it was difficult to reach a consensus regarding the efficacy of zirconia implants in maintaining crestal bone levels and periimplant soft tissue health.

    Matched MeSH terms: Dental Materials*
  7. Jadhav V, Deshpande S, Radke U, Mahale H, Patil PG
    J Prosthet Dent, 2021 Oct;126(4):590-594.
    PMID: 33012529 DOI: 10.1016/j.prosdent.2020.07.014
    STATEMENT OF PROBLEM: Xerostomia refers to the decrease in the quality and quantity of saliva. In denture wearers, xerostomia affects the retention of the denture because of lack of wettability of the denture base. However, which denture base resin materials are best wetted by artificial salivary substitutes is unclear.

    PURPOSE: The purpose of this in vitro study was to determine the wetting properties of 3 different commercially available denture base resin materials with artificial salivary substitute by using contact angle measurements and to compare these properties before and after thermocycling.

    MATERIAL AND METHODS: A total 120 specimens were fabricated with 3 different denture base materials (n=40): heat-polymerized polymethylmethacrylate (DenTek), injection-molded nylon polyamide (Valplast), and microwave polymerized (VIPI WAVE). The advancing and receding contact angles were measured with a goniometer by using the WinDrop++ software program. The contact angle hysteresis was calculated from the advancing and receding contact angles values. The same specimens were subjected to thermocycling to measure the advancing and receding contact angles values. The comparative evaluation was carried out before and after thermocycling.

    RESULTS: The mean ±standard deviation contact angles of the microwave-polymerized material were (62.40 ±1.21 degrees) advancing contact angle, (32.12 ±0.66 degrees) receding contact angle, and (30.28 ±1.40 degrees) contact angle of hysteresis. It was followed by the injection-molded nylon polyamide material, whose mean ±standard deviation contact angle values were (68.57 ±1.72 degrees) advancing contact angle, (43.02 ±1.39 degrees) receding contact angle, (26.27 ±2.05 degrees) contact angle hysteresis and high impact strength heat-polymerized polymethylmethacrylate material, whose mean ±standard deviation contact angle values were (69.81 ±0.16 degrees) advancing contact angle, (41.90 ±1.02 degrees) receding contact angle, and (27.91 ±0.97 degrees) contact angle hysteresis. The statistical analysis showed significant differences among contact angle values of the microwave-polymerized material as compared with the heat-polymerized polymethylmethacrylate and injection-molded nylon polyamide materials (P

    Matched MeSH terms: Dental Materials
  8. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Dental Materials/chemistry
  9. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Dental Materials/chemistry
  10. Ibrahim WM, McCabe JF
    J Nihon Univ Sch Dent, 1993 Dec;35(4):225-9.
    PMID: 8158281
    The mean strength that has traditionally been taken as a measurement of the strength of a material does not reflect the true strength, and therefore it cannot be used as a design parameter. This explains why many brittle materials fail at unpredictable stress, either below or above the mean strength. By using Weibull statistics, the prediction and assessment of strength can be made more sensibly. The performance of a material can be predicted by considering a stress at a lower level of failure probability.
    Matched MeSH terms: Dental Materials*
  11. Memon MS, Yunus N, Razak AA
    Int J Prosthodont, 2001 May-Jun;14(3):214-8.
    PMID: 11484567
    PURPOSE: The impact strength and the flexural properties of denture base materials are of importance in predicting their clinical performance upon sudden loading. This study compares the impact and transverse strengths and the flexural modulus of three denture base polymers.
    MATERIALS AND METHODS: The investigation included a relatively new microwave-polymerized polyurethane-based denture material processed by an injection-molding technique, a conventional microwave-polymerized denture material, and a heat-polymerized compression-molded poly(methyl methacrylate) (PMMA) denture material. Impact strength was determined using a Charpy-type impact tester. The transverse strength and the flexural modulus were assessed with a three-point bending test. The results were subjected to statistical analysis using a one-way analysis of variance and the Scheffé test for comparison.
    RESULTS: The impact strength of the microwave-polymerized injection-molded polymer was 6.3 kl/m2, while its flexural strength was 66.2 MPa. These values were lower than those shown by the two compression-molded PMMA-based polymers. The differences were statistically significant. The flexural modulus of the new denture material was 2,832 MPa, which was higher than the conventional heat-polymerized polymer but was comparable to the other microwave-polymerized PMMA-based polymer. The difference in the flexural modulus was statistically significant.
    CONCLUSION: In terms of the impact and flexural strengths, the new microwave-polymerized, injection-molded, polyurethane-based polymer offered no advantage over the existing heat- and microwave-polymerized PMMA-based denture base polymers. However, it has a rigidity comparable to that of the microwave-polymerized PMMA polymer.
    Matched MeSH terms: Dental Materials/radiation effects; Dental Materials/chemistry*
  12. Vajda TT
    Dent J Malaysia Singapore, 1971 Apr;11(1):5-8.
    PMID: 5288002
    Matched MeSH terms: Dental Materials
  13. Chong MM, Chang SY, Noraiham Muhammad, Zulkifli Mord Rosli, Qumrul Ahsan
    Sains Malaysiana, 2014;43:959-966.
    Dry sliding wear of polyester hybrid composites containing carboxylic functionalized multi-walled carbon nanotubes (cNT) and microparticles, silica (Si02) was studied at different sliding distances. An attempt has been made to produce uniform dispersion of nano- and micro- particles in the test samples by ultrasonication. The tribological properties of the hybrid composites were performed by using pin-on-disc (POD) tester against grey cast iron countersurface. The dry sliding wear tests were carried out under pressure-velocity (pv) condition of 0.4 MPa and 4 m/s for total sliding distance of 28800 m and at an interval of every sliding distance of 3600 m, wear properties and behavior were studied. The samples containing 10 wt.% silica (microparticles) with and without CNT always show increase in coefficient of friction at the expense of wear rate. However, samples containing only ci'rr have the lowest wear rate with the increase in coefficient of friction. Sliding distance studies also provide the information on wear rates which were ever changing at different sliding distances whereas average coefficient of friction did not vary throughout the tests. SEM observations of wear surfaces showed different wear morphologies when reinforcement (cNT or Si02) incorporated into the composites either alone or in combination.
    Matched MeSH terms: Dental Materials
  14. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1179-1186.
    In this study, poly(ethylene terephthalate) (PET) wastes bottle was recycled by glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. The blend of UPR based on recycled PET wastes with liquid natural rubber (LNR) was carried out by varying the amount of LNR from 0 to 7.5 wt%. Mechanical tests such as tensile and impact were conducted to investigate the effects of LNR on the mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the breaking area resulted from the tensile tests on the UPR and blend samples. From the results, the blend of 2.5 wt% LNR in UPR based recycled PET wastes achieved the highest strength in the mechanical properties and showed a well dispersed of elastomer particles in the sample morphology compared to other blends concentrations. This blend sample was then compared to the optimum blend of LNR with commercial resin through the glass transition temperature value Tg, mechanical strength and morphology properties. The comparison study showed that the Tg for UPR based recycled PET was higher than the value represented from commercial resin due to the degree of crystalinity in the molecular structure of the materials. LNR was found to be an effective impact modifier which gave a greater improvement in UPR from recycled PET wastes structure but not to the commercial one which needs 5% LNR to achieve the optimum properties. Thus, the compatibility between the UP resin based recycled PET and LNR was much better than with the commercial resin.
    Matched MeSH terms: Dental Materials
  15. Nor Rabbi’atul ‘Adawiyah Norzali, Khairiah Badri, Mohd Zaki Nuawi
    Sains Malaysiana, 2011;40:1179-1186.
    Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt% of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt% loading of ATH. The compression stress and modulus decreased drastically at 4 wt% (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt% ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt% ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ATH with 4 wt% ATH.
    Matched MeSH terms: Dental Materials
  16. Low L, Abu Bakar A
    Sains Malaysiana, 2013;42:443-448.
    Hollow epoxy particles (HEP) serving as reinforcing fillers were prepared using the water-based emulsion method in this study. HEP was incorporated into the polyester matrix at various loading, ranging from 0 wt% to 9 wt%, to toughen the brittle polyester thermoset. The polyester composites were prepared using the casting technique. The fracture toughness and impact strength of the polyester composites increased with increasing the HEP loading up to 5 wt%, after which
    there was a drop. The improvement in fracture toughness and impact strength is attributed to the good polymer-filler interaction. This finding was further supported by the scanning electron micrograph, in which it was shown that the polyester resin was interlocked into the pore regions of the HEP filler. The reduction in fracture toughness and impact strength of the polyester composite were believed to be attributed to the filler agglomeration. This filler-filler interaction would create stress concentration areas and eventually weakened the interfacial adhesion between the polymer matrix and the filler particles. Hence, lower fracture toughness and impact strength of the highly HEP-filled polyester composites (above 5 wt%) were detected.
    Matched MeSH terms: Dental Materials
  17. Nurul Hidayah Ismail, Mohd Hafizi Mohamad, Mariatti Jaafar
    Sains Malaysiana, 2018;47:563-569.
    This study was carried out to investigate the effect of adding 1 vol% of multi-walled carbon nanotubes (MWCNT) into
    woven kenaf/epoxy laminated composites on their flexural properties and to compare between two techniques used to
    incorporate MWCNT into the composite which are spraying and solution techniques. Furthermore, the effect of MWCNT
    addition in woven glass/woven kenaf/epoxy hybrid composites at the same filler concentration on the flexural properties
    were also investigated. All the laminated composites with and without MWCNT were fabricated using vacuum bagging
    method. The flexural properties of the composite samples with and without MWCNT were evaluated by applying threepoint
    bending test. The results were supported by morphological observation. It was found that the addition of MWCNT
    using both spraying and solution techniques reduced the flexural strength and flexural modulus of MWCNT/woven kenaf/
    epoxy composites, with obvious reduction trend was shown by former technique. The morphological observation of the
    composites fracture surface showed that delamination failure occurred in MWCNT/woven kenaf/epoxy laminated composite
    prepared by spraying technique. Further investigation on hybrid composites showed that MWCNT/woven glass/woven
    kenaf/epoxy laminated hybrid composites exhibited significant improvement in the flexural properties.
    Matched MeSH terms: Dental Materials
  18. Sapuan SM, Aulia HS, Ilyas RA, Atiqah A, Dele-Afolabi TT, Nurazzi MN, et al.
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992450 DOI: 10.3390/polym12102211
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.
    Matched MeSH terms: Dental Materials
  19. Chow ZP, Ahmad Z, Wong KJ, Koloor SSR, Petrů M
    Polymers (Basel), 2021 Feb 04;13(4).
    PMID: 33557350 DOI: 10.3390/polym13040492
    This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal-composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium-glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen's edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.
    Matched MeSH terms: Dental Materials
  20. Hashim MKR, Abdul Majid MS, Jamir MRM, Kasim FH, Sultan MTH
    Polymers (Basel), 2021 Jan 31;13(3).
    PMID: 33572609 DOI: 10.3390/polym13030455
    In this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0°, 90°] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
    Matched MeSH terms: Dental Materials
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links