A simple yet useful criterion based on external markings and/or number of dorsal spines is currently used to differentiate two congeneric archer fish species Toxotes chatareus and Toxotes jaculatrix. Here we investigate other morphometric and meristic characters that can also be used to differentiate these two species. Principal component and/or discriminant functions revealed that meristic characters were highly correlated with pectoral fin ray count, number of lateral line scales, as well as number of anal fin rays. The results indicate that T. chatareus can be distinguished from T. jaculatrix by having a greater number of lateral line scales, a lower number of pectoral fin rays, and a higher number of anal fin rays. In contrast, morphometric discriminant analyses gave relatively low distinction: 76.1% of fish were ascribed to the correct species cluster. The observed morphometric differences came from the dorsal and anal spines lengths, with T. chatareus having shorter dorsal and longer anal spines than T. jaculatrix. Overall, meristic traits were more useful than morphometrics in differentiating the two species; nevertheless, meristics and morphometrics together provide information about the morphological differentiation between these two closely related archer fishes.
Digitised monogenean images are usually stored in file system directories in an unstructured manner. In this paper we propose a semantic representation of these images in the form of a Monogenean Haptoral Bar Image (MHBI) ontology, which are annotated with taxonomic classification, diagnostic hard part and image properties. The data we used are basically of the monogenean species found in fish, thus we built a simple Fish ontology to demonstrate how the host (fish) ontology can be linked to the MHBI ontology. This will enable linking of information from the monogenean ontology to the host species found in the fish ontology without changing the underlying schema for either of the ontologies.
A study on elemental composition in the otolith of giant mudskipper, Periophthalmodon schlosseri, was done from June to October 2003. Specimens were obtained from the mangrove areas of Kuala Selangor, Sepang and Melaka in the west coast of Peninsular Malaysia. A total of 70 sagitta otoliths were analyzed to detect variation of Sr, Ba and Mg, replacing the natural chemical composition of the otolith, which is the calcium carbonate (CaCO3). The average ratio of Sr:Ca was 0.11 x 10(-4), Ba:Ca was 5.7 x 10(-3) and Mg:Ca was 0.2 x 10(-3). Strong correlation (R > 0.8) between fish body size and otolith weight ofmudskipper (p < 0.01) also found during this study.
The Japanese scad Decapterus maruadsi (Carangidae) is an economically important marine species in Asia but its exploitation shows signs of overfishing. To document its stock structure, a population genetic and phylogeographic study of several populations of this species from the central part of the Indo-West Pacific region was conducted using the mitochondrial cytochrome b gene. Genetic homogeneity within the Sundaland region's population, including Rosario (the Philippines) and Ranong (Andaman Sea) populations was revealed with low nucleotide diversity (π = 0.001-0.003) but high haplotype diversity (h = 0.503-0.822). In contrast, a clear genetic structure was observed between this group and the northern Vietnam populations as revealed by FST, AMOVA and SAMOVA, while the central Vietnam population of Khanh Hoa is an admixed group between the two differentiated regional populations. The neutrality and mismatch distribution analyses supported a demographic expansion of D. maruadsi in between last Pleistocene to early Holocene period which influenced present day distribution pattern. Contemporary factors such as oceanic currents and different life history traits are also believed to play significant roles in the observed population structure and biogeographical pattern. Based on these results, recommendations on how stocks of the Japanese scad should be managed are offered.