Displaying all 5 publications

Abstract:
Sort:
  1. Sieo CC, Abdullah N, Tan WS, Ho YW
    Poult Sci, 2005 May;84(5):734-41.
    PMID: 15913185
    Two experiments were conducted to study the effects of beta-glucanase produced by transformed Lactobacillus strains on the intestinal characteristics and feed passage rate of broiler chickens fed barley-based diets. Supplementation of transformed Lactobacillus strains to the diet of chickens significantly (P < 0.05) reduced the intestinal fluid viscosity by 21 to 46% compared with chickens fed an unsupplemented diet or a diet supplemented with parental Lactobacillus strains. The relative weights of pancreas, liver, duodenum, jejunum, ileum, ceca, and colon were reduced (P < 0.05) by 6 to 27%, and the relative length of duodenum, jejunum, ileum, and ceca was reduced (P < 0.05) by 8 to 15%. Histological examination of the intestinal tissues showed that the jejunal villus height of chickens fed a diet supplemented with transformed Lactobacillus strains was significantly (P < 0.05) higher than that of chickens fed other dietary treatments. The transformed Lactobacillus strains were found to reduce (P < 0.05) the time of feed passage rate by 2.2 h. Supplementation of transformed Lactobacillus strains to the diet improved the intestinal characteristics and feed, passage rate of the chickens.
    Matched MeSH terms: Gastrointestinal Motility/physiology*
  2. Yeong CH, Ng KH, Abdullah BJJ, Chung LY, Goh KL, Perkins AC
    Appl Radiat Isot, 2014 Dec;94:216-220.
    PMID: 25222875 DOI: 10.1016/j.apradiso.2014.08.009
    Radionuclide imaging using (111)In, (99m)Tc and (153)Sm is commonly undertaken for the clinical investigation of gastric emptying, intestinal motility and whole gut transit. However the documented evidence concerning internal radiation dosimetry for such studies is not readily available. This communication documents the internal radiation dosimetry for whole gastrointestinal transit studies using (111)In, (99m)Tc and (153)Sm labeled formulations. The findings were compared to the diagnostic reference levels recommended by the United Kingdom Administration of Radioactive Substances Advisory Committee, for gastrointestinal transit studies.
    Matched MeSH terms: Gastrointestinal Motility/physiology*
  3. Chua AS, Keeling PW
    World J Gastroenterol, 2006 May 07;12(17):2688-93.
    PMID: 16718754 DOI: 10.3748/wjg.v12.i17.2688
    Functional dyspepsia (FD) is a common disorder of yet uncertain etiology. Dyspeptic symptoms are usually meal related and suggest an association to gastrointestinal (GI) sensorimotor dysfunction. Cholecystokinin (CCK) is an established brain-gut peptide that plays an important regulatory role in gastrointestinal function. It inhibits gastric motility and emptying via a capsaicin sensitive vagal pathway. The effects on emptying are via its action on the proximal stomach and pylorus. CCK is also involved in the regulation of food intake. It is released in the gut in response to a meal and acts via vagal afferents to induce satiety. Furthermore CCK has also been shown to be involved in the pathogenesis of panic disorder, anxiety and pain. Other neurotransmitters such as serotonin and noradrenaline may be implicated with CCK in the coordination of GI activity. In addition, intravenous administration of CCK has been observed to reproduce the symptoms in FD and this effect can be blocked both by atropine and loxiglumide (CCK-A antagonist). It is possible that an altered response to CCK may be responsible for the commonly observed gastric sensorimotor dysfunction, which may then be associated with the genesis of dyspeptic symptoms.
    Matched MeSH terms: Gastrointestinal Motility/physiology
  4. Chua AS
    World J Gastroenterol, 2006 May 07;12(17):2656-9.
    PMID: 16718748 DOI: 10.3748/wjg.v12.i17.2656
    Dyspepsia itself is not a diagnosis but stands for a constellation of symptoms referable to the upper gastrointestinal tract. It consists of a variable combination of symptoms including abdominal pain or discomfort, postprandial fullness, abdominal bloating, early satiety, nausea, vomiting, heartburn and acid regurgitation. Patients with heartburn and acid regurgitation invariably have gastroesophageal reflux disease and should be distinguished from those with dyspepsia. There is a substantial group of patients who do not have a definite structural or biochemical cause for their symptoms and are considered to be suffering from functional dyspepsia (FD). Gastrointestinal motor abnormalities, altered visceral sensation, dysfunctional central nervous system-enteral nervous system (CNS-ENS) integration and psychosocial factors have all being identified as important pathophysiological correlates. It can be considered as a biopsychosocial disorder with dysregulation of the brain-gut axis being central in origin of disease. FD can be categorized into different subgroups based on the predominant single symptom identified by the patient. This subgroup classification can assist us in deciding the appropriate symptomatic treatment for the patient.
    Matched MeSH terms: Gastrointestinal Motility/physiology
  5. Ibrahim A, Ali RAR, Manaf MRA, Ahmad N, Tajurruddin FW, Qin WZ, et al.
    PLoS One, 2020;15(12):e0244680.
    PMID: 33382780 DOI: 10.1371/journal.pone.0244680
    OBJECTIVE: We determined the effectiveness of a multi-strain probiotic (Hexbio®) containing microbial cell preparation MCP®BCMC® on constipation symptoms and gut motility in PD patients with constipation.

    METHODS: PD patients with constipation (ROME III criteria) were randomized to receive a multi-strain probiotic (Lactobacillus sp and Bifidobacterium sp at 30 X 109 CFU) with fructo-oligosaccaride or placebo (fermented milk) twice daily for 8 weeks. Primary outcomes were changes in the presence of constipation symptoms using 9 items of Garrigues Questionnaire (GQ), which included an item on bowel opening frequency. Secondary outcomes were gut transit time (GTT), quality of life (PDQ39-SI), motor (MDS-UPDRS) and non-motor symptoms (NMSS).

    RESULTS: Of 55 recruited, 48 patients completed the study: 22 received probiotic and 26 received placebo. At 8 weeks, there was a significantly higher mean weekly BOF in the probiotic group compared to placebo [SD 4.18 (1.44) vs SD 2.81(1.06); (mean difference 1.37, 95% CI 0.68, 2.07, uncorrected p<0.001)]. Patients in the probiotic group reported five times higher odds (odds ratio = 5.48, 95% CI 1.57, 19.12, uncorrected p = 0.008) for having higher BOF (< 3 to 3-5 to >5 times/week) compared to the placebo group. The GTT in the probiotic group [77.32 (SD55.35) hours] reduced significantly compared to placebo [113.54 (SD 61.54) hours]; mean difference -36.22, 95% CI -68.90, -3.54, uncorrected p = 0.030). The mean change in GTT was 58.04 (SD59.04) hour vs 20.73 (SD60.48) hours respectively (mean difference 37.32, 95% CI 4.00, 70.63, uncorrected p = 0.028). No between-groups differences were observed in the NMSS, PDQ39-SI, MDS-UPDRS II and MDS-UPDRS III scores. Four patients in the probiotics group experienced mild reversible side effects.

    CONCLUSION: This study showed that consumption of a multi-strain probiotic (Hexbio®) over 8 weeks improved bowel opening frequency and whole gut transit time in PD patients with constipation.

    Matched MeSH terms: Gastrointestinal Motility/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links