Displaying all 5 publications

Abstract:
Sort:
  1. Loh KE, Chin YS, Safinar Ismail I, Tan HY
    Phytochem Anal, 2022 Jan;33(1):12-22.
    PMID: 34000756 DOI: 10.1002/pca.3057
    INTRODUCTION: Hyperuricemia is the key risk factor for gout, in which the elevated uric acid is attributed to the oxidation of hypoxanthine and xanthine to uric acid by xanthine oxidase (XO). Adverse effects of the current treatments lead to an urgent need for safer and more effective alternative from natural resources.

    OBJECTIVE: To compare the metabolite profile of Chrysanthemum morifolium flower fraction with that of its detannified fraction in relation to XO inhibitory activity using a rapid and effective metabolomics approach.

    METHODS: Proton nuclear magnetic resonance (1 H-NMR)-based metabolomics approach coupled with multivariate data analysis was utilised to characterise the XO inhibitors related to the antioxidant properties, total phenolic, and total flavonoid contents of the C. morifolium dried flowers.

    RESULTS: The highest XO inhibitory activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, total phenolic and flavonoid content with strong positive correlation between them were observed in the ethyl acetate (EtOAc) fraction. Detannified EtOAc showed higher XO inhibitory activity than non-detannified EtOAc fraction. A total of 17 metabolites were tentatively identified, of which three namely kaempferol, 4-hydroxybenzoic acid and apigenin, could be suggested to be responsible for the strong XO inhibitory activity. Additive interaction between 4-hydroxybenzoic acid and apigenin (or kaempferol) in XO inhibition was demonstrated in the interaction assay conducted.

    CONCLUSION: Chrysanthemum morifolium dried flower-part could be further explored as a natural XO inhibitor for its anti-hyperuricemic potential. Metabolomics approach served as an effective classification of plant metabolites responsible for XO inhibitory activity, and demonstrated that multiple active compounds can work additively in giving combined inhibitory effects.

    Matched MeSH terms: Gout Suppressants/pharmacology
  2. Chan CW, Yap YN
    Expert Opin Pharmacother, 2018 Dec;19(18):2011-2018.
    PMID: 30345832 DOI: 10.1080/14656566.2018.1536747
    INTRODUCTION: Hyperuricemia has been identified as an independent risk factor for coronary artery disease (CAD). Uric acid lowering therapy could potentially lower the risk of CAD. Conventional treatments have been effective in treating acute gout flares in most patients, but certain options, like NSAIDs could increase the risk of CAD. Area covered: This review covers the aspect of cardiac safety with traditional and new medications used in treating both acute flares and chronic gout according to the most recent international guidelines. Expert opinion: All NSAIDs, not just selective Cox 2 inhibitors, have associated with them different degrees of cardiac risk; therefore, NSAIDs should be avoided when treating patients with underlying CAD. Interleukin-1 inhibitors appear to be safe alternatives for treating cardiac patients who are contraindicated to conventional treatment. Presently, there is a paucity of evidence concerning whether treatment of hyperuricemia could lower the risk of CAD and this must be explored further. It is also important to explore the cardiac safety of plegloticase to better ascertain its safety in CAD patients.
    Matched MeSH terms: Gout Suppressants/pharmacology
  3. Cheng LC, Murugaiyah V, Chan KL
    J Ethnopharmacol, 2015 Dec 24;176:485-93.
    PMID: 26593216 DOI: 10.1016/j.jep.2015.11.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Lippia nodiflora has been traditionally used in the Ayurvedic, Unani, and Sidha systems, as well as Traditional Chinese Medicine (TCM) for the treatment of knee joint pain, lithiasis, diuresis, urinary disorder and swelling.
    AIM OF THE STUDY: The present study aims to investigate the antihyperuricemic effect of the L. nodiflora methanol extract, fractions, and chemical constituents and their mechanism of action in the rat model.
    MATERIALS AND METHODS: The mechanisms were investigated by performing xanthine oxidase inhibitory, uricosuric, and liver xanthine oxidase/xanthine dehydrogenase (XOD/XDH) inhibitory studies in potassium oxonate- and hypoxanthine-induced hyperuricemic rats. The plant safety profile was determined using acute toxicity study. The molecular docking of the active compound to the xanthine oxidase was simulated using computer aided molecular modeling analysis.
    RESULTS: Oral administration of methanol extract showed a dose-dependent reduction effect on the serum uric acid level of hyperuricemic rats. F3 was the most potent fraction in lowering the serum uric acid level of hyperuricemic rats. Bioactivity-guided purification of F3 afforded two phenylethanoid glycosides, arenarioside (1) and verbascoside (2) and three flavonoids, 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5). The highest serum uric acid reduction effect was exhibited by 3 (66.94%) in hyperuricemic rats, followed by 5 (55.97%), 4 (49.16%), 2 (29.03%), and 1 (22.08%) at 0.2 mmol/kg. Dose-response investigation on 3 at doses of 0.05, 0.1, and 0.3 mmol/kg produced a significant dose-dependent reduction on the serum uric acid level of hyperuricemic rats. Repeated administration of F3 or 3 to the hyperuricemic rats for 10 continuous days resulted in a significant and progressive serum uric acid lowering effect in hyperuricemic rats. In contrast, methanol extract and F3 did not reduce serum uric acid level of normoruricemic rats. In addition, F4 significantly increased the uric acid excretion of hyperuricemic rats at 200mg/kg. No toxic effect was observed in rats administered with 5000 mg/kg of methanol extract or F3.
    CONCLUSION: The potential application of L. nodiflora against hyperuricemia in the animal in accordance with its traditional uses has been demonstrated in the present study for the first time. The antihyperuricemic effect possessed by L. nodiflora was contributed mainly by liver XOD/XDH inhibitory activities and partially by uricosuric effect. Flavonoids mainly accountable for the uric acid lowering effect of L. nodiflora through the inhibition of XOD/XDH activities.
    KEYWORDS: Antihyperuricemic; Hypoxanthine-induced hyperuricemic rat; Lippia nodiflora; Liver xanthine oxidase and xanthine dehydrogenase; Serum uric acid; Uric acid excretion
    Matched MeSH terms: Gout Suppressants/pharmacology
  4. Sosroseno W
    Biomed Pharmacother, 2009 Mar;63(3):221-7.
    PMID: 18534811 DOI: 10.1016/j.biopha.2008.04.004
    The aim of the present study was to test the hypothesis that colchicine may alter Aggregatibacter actinomycetemcomitans-induced immune response and abscess formation in mice. BALB/c mice were either sham-immunized or immunized with heat-killed A. actinomycetemcomitans. Spleen cells were stimulated with heat-killed A. actinomycetemcomitans in the presence or absence of colchicine. Specific IgG subclass antibodies, interferon-gamma (IFN-gamma), interleukin-4 (IL-4) and cell proliferation were determined. The animals were sham-immunized (group I) or immunized with heat-killed A. actinomycetemcomitans (groups II-VII). Colchicine was administered intraperitoneally before (group III), on the same day of (group IV), or after (group V) the primary immunization and on the same day of (group VI) or after (group VII) the secondary immunization. All groups were challenged with viable A. actinomycetemcomitans. The levels of serum-specific IgG subclasses and both IFN-gamma and IL-4 before and after bacterial challenge were assessed. The diameter of skin lesions was assessed. The results showed that colchicine augmented splenic-specific IgG1 and IL-4 as well as cell proliferation but suppressed specific IgG2a and IFN-gamma levels. Enhancement of serum-specific IgG1 and IL-4 levels, suppression of specific IgG2a and IFN-gamma levels as well as DTH response, and delayed healing of the lesions were observed in groups IV and VI, but not in the remaining groups of animals. Therefore, these results suggest that colchicine may induce a T helper 2 (Th2)-like immunity specific to A. actinomycetemcomitans in vitro and that colchicine administered on the same day as the immunization may stimulate a non-protective Th2-like immunity in A. actinomycetemcomitans-induced infections in mice.
    Matched MeSH terms: Gout Suppressants/pharmacology
  5. Murugaiyah V, Chan KL
    J Ethnopharmacol, 2009 Jul 15;124(2):233-9.
    PMID: 19397979 DOI: 10.1016/j.jep.2009.04.026
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri Linn. (Euphorbiaceae) is used as folk medicine in South America to treat excess uric acid. Our initial study showed that the methanol extract of Phyllanthus niruri and its lignans were able to reverse the plasma uric acid of hyperuricemic animals.
    AIM OF THE STUDY: The study was undertaken to investigate the mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignan constituents.
    MATERIAL AND METHODS: The mechanisms were investigated using xanthine oxidase assay and uricosuric studies in potassium oxonate- and uric acid-induced hyperuricemic rats.
    RESULTS: Phyllanthus niruri methanol extract exhibited in vitro xanthine oxidase inhibition with an IC50 of 39.39 microg/mL and a moderate in vivo xanthine oxidase inhibitory activity. However, the lignans display poor xanthine oxidase inhibition in vitro and a relatively weak in vivo inhibitory activity at 10mg/kg. On the other hand, intraperitoneal treatment with Phyllanthus niruri methanol extract showed 1.69 folds increase in urinary uric acid excretion when compared to the hyperuricemic control animals. Likewise, the lignans, phyllanthin, hypophyllanthin and phyltetralin exhibited up to 2.51 and 11.0 folds higher in urinary uric acid excretion and clearance, respectively. The co-administration of pyrazinamide with phyllanthin exhibited a significant suppression of phyllanthin's uricosuric activity resembling that of pyrazinamide with benzbromarone.
    CONCLUSIONS: The present study showed that the antihyperuricemic effect of Phyllanthus niruri methanol extract may be mainly due to its uricosuric action and partly through xanthine oxidase inhibition, whereas the antihyperuricemic effect of the lignans was attributed to their uricosuric action.
    Matched MeSH terms: Gout Suppressants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links