Displaying all 3 publications

Abstract:
Sort:
  1. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
    Matched MeSH terms: Hydrazones/metabolism
  2. Tariq QU, Malik S, Khan A, Naseer MM, Khan SU, Ashraf A, et al.
    Bioorg Chem, 2019 03;84:372-383.
    PMID: 30530108 DOI: 10.1016/j.bioorg.2018.11.053
    Xanthenone based hydrazone derivatives (5a-n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a-n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.
    Matched MeSH terms: Hydrazones/metabolism
  3. Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, et al.
    Eur J Med Chem, 2017 Jan 27;126:1021-1033.
    PMID: 28012342 DOI: 10.1016/j.ejmech.2016.12.019
    Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
    Matched MeSH terms: Hydrazones/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links