STUDY DESIGN: This observational cross-sectional study includes 195 confirmed PPHN with a gestational age of ≥34 weeks without congenital heart disease. Multivariable logistic regression was used to identify risk factors for mortality.
RESULTS: The mortality rate was 16.4%, with the highest mortality with pulmonary hypoplasia. Of 195, 65% received iNO; 18% were iNO non-responders with the majority having pulmonary hypoplasia. Independent risk factors for mortality were the presence of reversal of flow at the descending aorta, pulmonary hypoplasia, APGAR scores ≤ 5 at 5 min, and idiopathic PPHN with an adjusted odds ratio of 15.9, 7.5, 6.7, and 6.4, respectively.
CONCLUSIONS: Despite the usage of iNO, mortality due to PPHN remains high and is related to etiology and cardiac function.
METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.
RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.
CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.