Displaying all 9 publications

Abstract:
Sort:
  1. Chan HH, Mustafa FF, Zairi J
    Trop Biomed, 2011 Aug;28(2):464-70.
    PMID: 22041770
    Routine surveillance on resistant status of field mosquito populations is important to implement suitable strategies in order to prevent pest outbreaks. WHO test kit bioassay is the most frequent bioassay used to investigate the susceptibility status of field-collected mosquitoes, as it is relatively convenient to be carried out in the field. In contrast, the topical application of active ingredient is less popular in investigating the susceptibility status of mosquitoes. In this study, we accessed the susceptibility status of Aedes albopictus Skuse collected from two dengue hotspots on Penang Island: Sungai Dua and Persiaran Mayang Pasir. Two active ingredients: permethrin and deltamethrin, were used. WHO test kit bioassay showed that both wild strains collected were susceptible to the two active ingredients; while topical application assay showed that they were resistant. This indicated that WHO test kit bioassay less sensitive to low level of resistance compared to topical application assay. Hence, topical application is expected to be more indicative when used in a resistance surveillance programme.
    Matched MeSH terms: Permethrin/pharmacology
  2. Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N
    PLoS Negl Trop Dis, 2023 Sep;17(9):e0011604.
    PMID: 37721966 DOI: 10.1371/journal.pntd.0011604
    Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase β2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2β was observed in adult permethrin resistant strain and tubulin β chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.
    Matched MeSH terms: Permethrin/pharmacology
  3. Chan HH, Zairi J
    J Med Entomol, 2013 Mar;50(2):362-70.
    PMID: 23540125
    Insecticide resistance has become a serious issue in vector management programs. Information on insecticidal resistance and its associated mechanisms is important for successful insecticide resistance management. The selection of a colony of permethrin-resistant Aedes albopictus (Skuse) (Diptera: Culicidae), originating from Penang Island, Malaysia, yielded high larval-specific resistance to permethrin and cross-resistance to deltamethrin. Synergism assays showed that the major mechanism underlying this resistance involves cytochrome P450 monooxygenase. The resistance is autosomal, polygenically inherited and incompletely dominant (D = 0.26). Resistant larvae were reared under different conditions to assess the fitness costs. Under high larval density, larval development time of the resistant SGI strain was significantly longer than the susceptible VCRU strain. In both high- and low-density conditions SGI showed a lower rate of emergence and survival compared with the VCRU strain. Resistant larvae were more susceptible to predation by Toxorhynchites splendens (Wiedemann) (Diptera: Culicidae) larvae. The body size of SGI females reared under high-density conditions was larger compared with females of the susceptible strain. SGI females survived longer when starved than did VCRU females. The energy reserve upon eclosion was positively correlated with the size of the adults.
    Matched MeSH terms: Permethrin/pharmacology*
  4. Rahim J, Ahmad AH, Ahmad H, Ishak IH, Rus AC, Maimusa HA
    J Am Mosq Control Assoc, 2017 Sep;33(3):200-208.
    PMID: 28854111 DOI: 10.2987/16-6607R.1
    Insecticide-based vector control approaches are facing challenges due to the development of resistance in vector mosquitoes. Therefore, a proper resistance surveillance program using baseline lethal concentrations is crucial for resistance management strategies. Currently, the World Health Organization's (WHO) diagnostic doses established for Aedes aegypti and Anopheles species are being used to study the resistance status of Aedes albopictus. In this study, we established the diagnostic doses for permethrin, deltamethrin, and malathion using a known susceptible reference strain. Five field-collected populations were screened against these doses, following the WHO protocol. This study established the diagnostic dose of malathion at 2.4%, permethrin at 0.95%, and deltamethrin at 0.28%, which differ from the WHO doses for Aedes aegypti and Anopheles spp. Among the insecticides tested on the 5 wild populations, only deltamethrin showed high effectiveness. Different susceptibility and resistance patterns were observed with permethrin, malathion, and dichloro-diphenyl-trichloroethane (DDT) at 4%. This study may assist the health authorities to improve future chemical-based vector control operations in dengue-endemic areas.
    Matched MeSH terms: Permethrin/pharmacology*
  5. Ho LY, Zairi J
    Trop Biomed, 2013 Mar;30(1):125-30.
    PMID: 23665718 MyJurnal
    A 14-months survey was carried out to identify the species composition of Anopheles mosquitoes from Kampung Bongor, Grik, Perak. Adding to that, a preliminary one month mosquito population screening was done at Kampung Tepin, Serian, Sarawak. Consequently, the insecticide susceptibility status of a pyrethroid was tested against two selected species of Anopheles collected from these two locations in Malaysia. A total of 4,497 Anopheles from 11 species were identified from collections in Kampung Bongor, whereas 2,654 An. letifer were collected from Kampung Tepin. The An. maculatus of Kampung Bongor and An. letifer of Kampung Tepin were then selected and tested using WHO standard diagnostic test kits and impregnated papers with 0.75% permethrin. The response values of KT50 and KT95 for An. maculatus were recorded at 28.09 minutes and 62.98 minutes respectively. Anopheles letifer recorded much slower response values of KT50 and KT95, which was at 35.09 minutes and 73.03 minutes respectively. Both An. maculatus and An. letifer showed 100% mortality after 24 hours holding period. The results indicate that both species were still susceptible to the tested pyrethroid. For effective vector control and resistance management, accurate and periodic insecticide resistance monitoring should be undertaken especially in rural areas with agricultural usage of insecticides.
    Matched MeSH terms: Permethrin/pharmacology
  6. Selvi S, Edah MA, Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2007 Jun;24(1):63-75.
    PMID: 17568379 MyJurnal
    Larvae and adults of Culex quinquefasciatus were used for the test undertaken for malathion resistant strain (F61 - F65) and permethrin resistant strain (F54 - F58). The results showed that the LC50 for both malathion (F61 - F65) and permethrin (F54 - F58) resistant Cx. quinquefasciatus increased steadily throughout the subsequent five generations, indicating a marked development of resistance. The adult female malathion resistant strain have developed a high resistance level to malathion diagnostic dosage with a resistance ratio of 9.3 to 17.9 folds of resistance compared with the susceptible Cx. quinquefasciatus. Permethrin resistance ratio remained as 1.0 folds of resistance at every generation. It was obvious that malathion resistance developed at a higher rate in adult females compared to permethrin. Enzyme-based metabolic mechanisms of insecticide resistance were investigated based on the biochemical assay principle. From the results obtained obviously shows that there is a significant difference (p < 0.05) in esterase level in both malathion and permethrin selected strains. Female malathion selected strain has the higher level of esterase activity compared to the female permethrin selected strain at (0.8 to 1.04) alpha-Na micromol/min/mg protein versus (0.15 to 0.24) alpha-Na micromol/min/mg protein respectively. This indicated increased level of non-specific esterase is playing an important role in resistance mechanism in female malathion selected strain. Permethrin selected strain exhibited non-specific esterase activity at a very low level throughout the different life stages compared to malathion selected strain. This study suggests that life stages play a predominant role in conferring malathion and permethrin resistance in Cx. quinquefasciatus.
    Matched MeSH terms: Permethrin/pharmacology*
  7. Hamdan H, Sofian-Azirun M, Nazni W, Lee HL
    Trop Biomed, 2005 Jun;22(1):45-52.
    PMID: 16880753
    Laboratory-bred females of Culex quinquefasciatus, Aedes aegypti and Aedes albopictus from the insectarium, Unit of Medical Entomology, Institute for Medical Research were used in the experiment. The late third stage of the F0 larvae which survived the high selection pressure of malathion, permethrin and temephos were reared and colonies were established from adults that emerged. Cx. quinquefasciatus larvae were subjected to selection by malathion and permethrin for 40 generations, Ae. aegypti larvae to malathion, permethrin and temephos for 32 generations and Ae. albopictus larvae were selected against malathion and permethrin for 32 generations and 20 generations against temephos. The rate of resistance development was measured by LC50 value. Cx. quinquefasciatus larvae developed higher resistance to malathion and permethrin compared to Ae. aegypti and Ae. albopictus. On the whole, permethrin resistance developed at a faster rate than malathion and temephos.
    Matched MeSH terms: Permethrin/pharmacology
  8. Selvi S, Endah MA, Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2005 Dec;22(2):103-13.
    PMID: 16883275
    To determine resistance level and characterize malathion and permethrin resistance in Culex quinquefasciatus, two methods were used namely: WHO procedures of larval bioassay to determine the susceptibility of lethal concentration (LC) and adult bioassay to determine the lethal time (LT) which are resistant to malathion and permethrin. These mosquito strains were bred in the Insectarium, Division of Medical Entomology, IMR. Thousands of late fourth instar larvae which survived the selection pressure to yield 50% mortality of malathion and permethrin were reared and colonies were established from adults that emerged. Larvae from these colonies were then subjected to the subsequent 10 generations in the test undertaken for malathion resistant strain (F61 - F70) and permethrin resistant strain (F54 - F63). Selection pressure at 50% - 70% mortality level was applied to the larvae of each successive generation. The rate of resistance development and resistance ratio (RR) were calculated by LC5 0 for larval bioassay and LT50 value for adult bioassay. The lab bred Cx. quinquefasciatus was used as a susceptible strain for comparison purpose. The adult bioassay test was carried out by using diagnostic dosages of malathion 5.0%, permethrin 0.75% and with propoxur 0.1%. All bioassay results were subjected to probit analysis. The results showed that LC5 0 for both malathion (F61 - F70) and permethrin (F54 - F63) resistant Cx. quinquefasciatus increased steadily to the subsequent 10 generations indicating a marked development of resistance. The adult female malathion resistant strain have developed high resistance level to malathion diagnostic dosage with resistance ratio 9.3 to 9.6 folds of resistance. Permethrin resistance ratio remained as 1.0 folds of resistance at every generation. It was obvious that malathion resistance developing at a higher rate in adult females compared to permethrin. Female adults exposed to 2 hours of exposure period for propoxur 0.1% showed presence of cross-resistance among the both strains of mosquitoes towards propoxur and it was indicated by 70%-100% mortality at 24 hours post-recovery period.
    Matched MeSH terms: Permethrin/pharmacology*
  9. Rohani A, Aziz I, Zurainee MN, Rohana SH, Zamree I, Lee HL
    Trop Biomed, 2014 Mar;31(1):159-65.
    PMID: 24862056 MyJurnal
    Chemical insecticides are still considered as important control agents for malaria vector control. However, prolonged use of these chemicals may select mosquito vectors for resistance. In this study, susceptibility status of adult Anopheles maculatus collected from 9 localities in peninsular Malaysia, viz., Jeli, Temerloh, Pos Banun, Senderut, Jeram Kedah, Segamat, Kota Tinggi, Kluang and Pos Lenjang were determined using the standard WHO bioassay method in which the adult mosquitoes were exposed to standard insecticide impregnated papers malathion, permethrin, DDT and deltamethrin--at pre-determined diagnostic dosage. Deltamethrin was most effective insecticide among the four insecticides tested, with the LT50 of 29.53 min, compared to malathion (31.67 min), DDT (47.76 min) and permethrin (48.01 min). The effect of all insecticides on the laboratory strain was greater (with all insecticides demonstrated LT50 < 1 hour) than the field strains (deltamethrin 32.7, malathion 53.0, permethrin 62.0, DDT 67.4 min). An. maculatus exhibited low degree of resistance to all test insecticides, indicating that these chemical insecticides are still effective in the control of malaria vector.
    Matched MeSH terms: Permethrin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links