There are no definite reports regarding the effects of chronic fluoxetine on animal models of epilepsy. Since chronically administered fluoxetine, in comparison to acutely administered fluoxetine has different effects on CNS, the present study was undertaken to investigate the effect of acute and chronic fluoxetine pretreatment, on a median anticonvulsant dose (ED50) of phenytoin in male ICR albino mice. Additionally, the effects of fluoxetine pretreatment on median convulsive current (CC50) in the presence and absence of phenytoin were investigated and results were compared. The maximal electroshock seizure (MES) test was used to estimate the ED50of phenytoin. The electroshock threshold test was used to estimate CC50. ED50and CC50values were calculated by probit analysis. The effects of the chronic and acute fluoxetine groups on the ED50of phenytoin were significantly different (P<0.05), and on CC50this difference was not statistically significant. Chronic fluoxetine insignificantly increased the ED50of phenytoin and decreased the CC50while acute fluoxetine decreased the ED50of phenytoin and increased the CC50. Our results indicate that chronic fluoxetine does not have an antiepileptic property and it may have dubious proconvulsant properties, contrary to acute fluoxetine.
A comparative effect of propranolol and nifedipine administered individually and in combination at graded dose levels; and that of phenytoin at 30 mg kg-1 on maximal electroshock (MES)-induced seizure in mice was investigated. Propranolol in doses of 10 mg kg-1 and 20 mg kg-1, and nifedipine in doses of 8 mg kg-1 and 16 mg kg-1 significantly modified MES activity. Propranolol (40 mg kg-1), and a combination of propranolol (20 mg kg-1) and nifedipine (8 mg kg-1), produced antiMES activity, which was comparable to that of phenytoin (30 mg kg-1). In mice treated with propranolol and nifedipine combination, the tonic flexor and tonic extensor phase ratios (F/E ratio) were significantly higher than individual drug responses. Our findings suggest that a combination of propranolol and nifedipine has either synergistic or an additive effect in controlling MES-induced seizures in mice.
We estimated individual and population Michaelis-Menten pharmacokinetic parameters for phenytoin (DPH) in epileptic patients attending our neurology clinic using the computer programme. OPT. Our results agreed well with literature values but were lower than those we obtained earlier in a smaller number of patients. The Km was independent of age, weight and sex but there was a weak, correlation between Vm and body weight. We conclude that the use of population Vm and Km in normograms could lead to errors in DPH dose estimations as they correlated very poorly with patient characteristics. OPT was easy to use and sufficiently accurate for deriving dose estimates in routine patients. Its use would enable practitioners to generate their patients' own parameters for use in individual dosage adjustments. The estimates can subsequently be updated as more data become available.
Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.