Displaying publications 1 - 20 of 307 in total

Abstract:
Sort:
  1. Bamaga OA, Mahdy MA, Lim YA
    Acta Trop, 2015 Sep;149:59-63.
    PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013
    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  2. Archibald CP, Mak JW, Mathias RG, Selvajothi S
    Acta Trop, 1990 Dec;48(2):149-57.
    PMID: 1980570
    Indirect fluorescent antibody (IFA) tests and enzyme-linked immunosorbent assays (ELISA) were used to measure antibodies to Plasmodium falciparum in an indigenous population in an area of Malaysia with high malaria prevalence. The results of three surveys were analyzed to examine the relation of these serologic measures with age, parasite rate, and spleen size. For children 0-4 years old, increasing spleen size was associated with an increasing likelihood of malaria parasitemia, while for 5-9 year olds the two variables were unrelated. Parasite rate declined with age and ELISA titre increased with age in all surveys; IFA titre was consistently high and did not vary with age. Neither antibody measure was significantly correlated with either the presence or the actual density of parasitemia. These antibody measures are most useful as adjuncts to the more traditional techniques of malaria assessment.
    Matched MeSH terms: Plasmodium falciparum/immunology*
  3. Alareqi LMQ, Mahdy MAK, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R
    Acta Trop, 2016 Oct;162:174-179.
    PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016
    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  4. Sangsri R, Choowongkomon K, Tuntipaiboontana R, Sugaram R, Boondej P, Sudathip P, et al.
    Acta Trop, 2023 Dec;248:107016.
    PMID: 37683820 DOI: 10.1016/j.actatropica.2023.107016
    BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program.

    METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates.

    RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates.

    CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.

    Matched MeSH terms: Plasmodium falciparum/genetics
  5. Lai MY, Ponnampalavanar SSS, Omar SFS, Lau YL
    Acta Trop, 2024 Mar;251:107120.
    PMID: 38199452 DOI: 10.1016/j.actatropica.2024.107120
    Combining the advantages of PCR and LAMP, we described a new technique, namely PCR-LAMP, for malaria diagnosis. The whole process of DNA amplification can be completed in 35 min. This hybrid amplification technique markedly improved the sensitivity of detection compared to the classic single PCR or LAMP assay alone. PCR-LAMP assay had a detection limit of 1 copy/µL for P. knowlesi and P. ovale, 0.1 copy/µL for P. vivax, P. falciparum and P. malariae, respectively. To facilitate the endpoint detection, xylenol orange was added. Positive samples were indicated in orange while negative reactions were violet. The inclusion of xylenol orange into the LAMP reaction mix significantly reduces the post-amplification workload. Without relying on the use of specific instruments, the color changes of the amplicons could be visualized directly through the naked eye. In conclusion, PCR-LAMP poses the potential to be developed as a new malaria molecular diagnosis tool.
    Matched MeSH terms: Plasmodium falciparum/genetics
  6. Ogunfowokan O, Ogunfowokan BA, Nwajei AI
    Afr J Prim Health Care Fam Med, 2020 Jun 17;12(1):e1-e8.
    PMID: 32634015 DOI: 10.4102/phcfm.v12i1.2212
    BACKGROUND: Malaria diagnosis using microscopy is currently the gold standard. However, malaria rapid diagnostic tests (mRDTs) were developed to simplify the diagnosis in regions without access to functional microscopy.

    AIM: The objective of this study was to compare the diagnostic accuracy of mRDT CareStatTM with microscopy.

    SETTING: This study was conducted in the paediatric primary care clinic of the Federal Medical Centre, Asaba, Nigeria.

    METHODS: A cross-sectional study for diagnostic accuracy was conducted from May 2016 to October 2016. Ninety-eight participants were involved to obtain a precision of 5%, sensitivity of mRDT CareStatTM of 95% from published work and 95% level of confidence after adjusting for 20% non-response rate or missing data. Consecutive participants were tested using both microscopy and mRDT. The results were analysed using EPI Info Version 7.

    RESULTS: A total of 98 children aged 3-59 months were enrolled. Malaria prevalence was found to be 53% (95% confidence interval [CI] = 46% - 60%), whilst sensitivity and specificity were 29% (95% CI = 20% - 38%) and 89% (95% CI = 83% - 95%), respectively. The positive and negative predictive values were 75% (95% CI = 66.4% - 83.6%) and 53% (95% CI = 46% - 60%), respectively.

    CONCLUSION: Agreement between malaria parasitaemia using microscopy and mRDT positivity increased with increase in the parasite density. The mRDT might be negative when malaria parasite density using microscopy is low.

    Matched MeSH terms: Plasmodium falciparum/immunology
  7. Hii JL, Kan S, Vun YS, Chin KF, Tambakau S, Chan MK, et al.
    Ann Trop Med Parasitol, 1988 Feb;82(1):91-101.
    PMID: 3041932
    Holoendemic malaria transmission in two small isolated forest communities and a coastal village was studied by (1) all night human bait collections of Anopheles species from inside and outside houses and (2) buffalo-biting and CDC light-trapping catches during March and November 1984. During the same period thick and thin blood films were collected from the human population, and spleen rates were determined in children from two to nine years of age. Using both the immunoradiometric assay (IRMA) and the dissection technique, more sporozoite-positive infections were detected in An. balabacensis and An. flavirostris in November than in March. IRMA confirmed the presence of Plasmodium falciparum sporozoites. An average of 76.2% of the An. balabacensis population lived long enough to have reached a point where infectivity with P. falciparum was possible in November. Although fewer than five adult females bit humans per night at any time, a resident could theoretically have received more than 160 infective bites in one year. A high frequency of feeding on humans, coupled with increased anopheline life expectancy, contributed to high estimates of falciparum malaria vectorial capacity (number of infections distributed per case per day); for An. balabacensis (1.44-7.44 in March and 9.97-19.7 in November) and for An. flavirostris (0.19-5.14 in March and 6.27-15.8 in November). These high values may explain the increased malaria parasite rates obtained from at least two forest communities. Correlation between actual and calculated rates of gametocytaemia was poorest in Kapitangan due to inadequate sampling of the human population. In Banggi island, malaria is stable and holoendemic, and the population enjoys a high degree of immunity.
    Matched MeSH terms: Plasmodium falciparum
  8. WHARTON RH, LAING AB, CHEONG WH
    Ann Trop Med Parasitol, 1963 Jun;57:235-54.
    PMID: 14042655
    Matched MeSH terms: Plasmodium falciparum*
  9. Lyn PC
    Ann Acad Med Singap, 1987 Apr;16(2):310-2.
    PMID: 3318659
    Of the seventy cases of cerebral malaria seen at the Duchess of Kent Hospital, Sandakan between January 1984 and June 1986, 57 (81.4%) were due to plasmodia falciparum and 13 (18.6%) were due to mixed p. vivax--p. falciparum infections. Mixed infection cerebral malaria was associated with a more severe anaemia and may carry a poorer prognosis. Indigenous children under five years of age are particularly at risk of death from mixed infections.
    Matched MeSH terms: Plasmodium falciparum
  10. Tan HS, Tan PE
    Ann Acad Med Singap, 1984 Apr;13(2):170-4.
    PMID: 6388486
    One hundred and ten consecutive patients with falciparum malaria were treated with Fansidar and primaquine. Of the 61 patients who were followed up at one week, 4 (6.6%) failed to clear their parasitaemia (1 R III and 3 R II treatment failures). Of the subsequent 40 patients who were seen again at one month, another 3 (7.5%) had recrudesced (R I treatment failure). A total of 7 patients thus experienced some form of treatment failure in the cohort of 40 who completed the one month follow up. Only 1 of these 7 patients (with R III treatment failure) failed to respond to repeat Fansidar treatment, and may be the only one with true Fansidar resistance. The overall treatment failure rate of 17.5% (95% confidence interval: 6-29%) in the cohort who completed the study is consistent with the known clinical efficacy of Fansidar. These results suggest no significant Fansidar resistance in falciparum malaria found in Sabah.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  11. Hoon AH, Lam CK, Wah MJ
    Antimicrob Agents Chemother, 1995 Mar;39(3):626-8.
    PMID: 7793863
    Malaysian, TGR (Thailand), and Gambian (West African) Plasmodium falciparum isolates were cultured in vitro by the candle jar method and were characterized for their susceptibilities to present antimalarial drugs by the modified in vitro microtechnique. Results showed that 93 and 47% of the Malaysian isolates were resistant at 50% inhibitory concentrations of 0.1415 to 0.7737 and 0.1025 to 0.1975 microM, respectively, while the rest were susceptible to choloroquine and cycloguanil at 0.0376 and 0.0306 to 0.0954 microM, respectively. All isolates were susceptible to mefloquine, quinine, and pyrimethamine at 0.0026 to 0.0172, 0.0062 to 0.0854, and 0.0149 to 0.0663 microM, respectively. In contrast, the Gambian isolate was susceptible to multiple drugs at 0.0024 to 0.0282 microM; TGR was resistant to chloroquine at 0.8147 microM but was susceptible to mefloquine, quinine, cycloguanil, and pyrimethamine at 0.0024, 0.0096, 0.0143, and 0.0495 microM, respectively.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  12. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
    Matched MeSH terms: Plasmodium falciparum/drug effects*; Plasmodium falciparum/genetics; Plasmodium falciparum/metabolism*
  13. Parapini S, Olliaro P, Navaratnam V, Taramelli D, Basilico N
    Antimicrob Agents Chemother, 2015 Jul;59(7):4046-52.
    PMID: 25918150 DOI: 10.1128/AAC.00183-15
    Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  14. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  15. Mohd Abd Razak MR, Afzan A, Ali R, Amir Jalaluddin NF, Wasiman MI, Shiekh Zahari SH, et al.
    PMID: 25510573 DOI: 10.1186/1472-6882-14-492
    The development of resistant to current antimalarial drugs is a major challenge in achieving malaria elimination status in many countries. Therefore there is a need for new antimalarial drugs. Medicinal plants have always been the major source for the search of new antimalarial drugs. The aim of this study was to screen selected Malaysian medicinal plants for their antiplasmodial properties.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  16. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    PMID: 21232161 DOI: 10.1186/1472-6882-11-3
    Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  17. Mussa A, Talib M, Mohamed Z, Hajissa K
    BMC Res Notes, 2019 Jun 11;12(1):334.
    PMID: 31186056 DOI: 10.1186/s13104-019-4361-6
    OBJECTIVE: Rapid diagnostic tests (RDTs) play a crucial role in the management and control of malaria infection. The histidine-rich protein 2 (PfHRP-2) based RDTs are the most commonly used RDTs for malaria diagnosis in Sudan. Deletion of pfhrp2 in Plasmodium falciparum genome affect the accuracy of PfHRP-2 based RDT kits. This study aimed to identify molecular variation of pfhrp2 among suspected malaria patients from different clinics in Omdurman, Sudan.

    RESULTS: A noticeable variation between the RDT (Alltest Biotech, China) and nPCR results was observed, for RDT 78% (46/59) were P. falciparum positive, 6.8% (4/59) were co-infected with both P. falciparum and Plasmodium vivax, 15.3% (9/59) were negative by the RDT. However, when the nPCR was applied only 44.1% (26/59) and 55.9% (33/59) was P. falciparum positive and negative respectively. The pfhrp2 was further amplified form all nPCR positive samples. Only 17 DNA samples were positive from the 26 positive P. falciparum, interestingly, variation in band sizes was observed and further confirmed by DNA sequencing, and sequencing analysis revealed a high-level of genetic diversity of the pfhrp2 gene in the parasite population from the study area. However, despite extreme sequence variation, diversity of PfHRP2 does not appear to affect RDT performance.

    Matched MeSH terms: Plasmodium falciparum/genetics*; Plasmodium falciparum/physiology
  18. Lithanatudom P, Chawansuntati K, Saenjum C, Chaowasku T, Rattanathammethee K, Wungsintaweekul B, et al.
    BMC Res Notes, 2023 Dec 22;16(1):381.
    PMID: 38135870 DOI: 10.1186/s13104-023-06664-w
    OBJECTIVE: Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining.

    RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.

    Matched MeSH terms: Plasmodium falciparum
  19. Wilson T, Edeson JFB
    Br Med J, 1953;1:731.
    A letter from Drs. G. I. Robertson, D. G. Davey, and Sir Hamilton Fairley (December 6, 1952, p. 1255) reported that a proguanil-resistant strain of Plasmodium falciparum from Malaya had proved to be resistant also to pyrimethamine (" daraprim "). Proguanil-resistance in Malayan strains of P. falciparum has been recognized since 19491; and if a true cross-resistance exists, this might-as implied by Dr. J. S. K. Boyd (February 7, p. 337)-go far to explain the pyrimethamine failures described in our paper (January 31, p. 253). Proguanil has been so widely used throughout Malaya for the past six years that there can be few strains of parasite which have not yet come into contact with it; thus there is little chance of deciding now how the "parent" strains (without previous contact with proguanil) might have responded to pyrimethamine. We have not, however, been able to confirm that there is any consistent cross-resistance between these two drugs in naturally acquired falciparum malaria since pyrimethamine was first used in Malaya in 1951. Pyrimethamine failures have been successfully treated with normal doses of proguanil, and proguanilresistant infections have responded readily to pyrimethamine. In some of these cases an interval of several days was allowed to elapse between treatments, so the possibility of a combined action of the two drugs should have 'been small. We consider that these apparently conflicting results can best be explained by assuming that some present-day strains of P. falciparum in Malaya possess a " natural" resistance to pyrimethamine, whether or not any particular strain is also demonstrably resistant to proguanil. With this species of parasite, a true cross-resistance has still to be proved. REFERENCE 1 British Medical Journal, 1950. 1, 147.
    Matched MeSH terms: Plasmodium falciparum
  20. Naghibi F, Esmaeili S, Abdullah NR, Nateghpour M, Taghvai M, Kamkar S, et al.
    Biomed Res Int, 2013;2013:316185.
    PMID: 24455686 DOI: 10.1155/2013/316185
    Based on the collected ethnobotanical data from the Traditional Medicine and Materia Medica Research Center (TMRC), Iran, Myrtus communis L. (myrtle) was selected for the assessment of in vitro and in vivo antimalarial and cytotoxic activities. Methanolic extract of myrtle was prepared from the aerial parts and assessed for antiplasmodial activity, using the parasite lactate dehydrogenase (pLDH) assay against chloroquine-resistant (K1) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum. The 4-day suppressive test was employed to determine the parasitemia suppression of the myrtle extract against P. berghei in vivo. The IC50 values of myrtle extract were 35.44 µg/ml against K1 and 0.87 µg/ml against 3D7. Myrtle extract showed a significant suppression of parasitaemia (84.8 ± 1.1% at 10 mg/kg/day) in mice infected with P. berghei after 4 days of treatment. Cytotoxic activity was carried out against mammalian cell lines using methyl thiazol tetrazolium (MTT) assay. No cytotoxic effect on mammalian cell lines up to 100 µg/mL was shown. The results support the traditional use of myrtle in malaria. Phytochemical investigation and understanding the mechanism of action would be in our upcoming project.
    Matched MeSH terms: Plasmodium falciparum/drug effects*; Plasmodium falciparum/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links