Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Rasoli M, Omar AR, Aini I, Jalilian B, Syed Hassan SH, Mohamed M
    Acta Virol., 2010;54(1):33-9.
    PMID: 20201612
    A series of plasmids containing the HSP70 gene of Mycobacterium tuberculosis fused to the hemagglutinin (H5) gene of H5N1 avian influenza virus (AIV) (H5-HSP70 (heat shock protein 70) vaccine) or individual H5 gene (H5 vaccine) or HSP70 gene (HSP70 vaccine) were constructed based on the plasmid pcDNA3.1. Expression of H5 gene in Vero cells in vitro and in chickens in vivo was confirmed following their transfection and immunization with H5 or H5-HSP70 vaccines. Controls consisted of HSP70 vaccine, empty plasmid pcDNA3.1 and co-administered H5 and HSP70 vaccines. H5-HSP70 vaccine produced in chicken higher hemagglutination inhibition (HI) antibody titer than H5 vaccine. However, the increase was not statistically significant. We have demonstrated for the first time that the H5 DNA vaccine with fused HSP70 gene may produce an enhanced induction of humoral immune response to AIV in chickens.
    Matched MeSH terms: Poultry Diseases/virology
  2. Sharma K, Hair-Bejo M, Omar AR, Aini I
    Acta Virol., 2005;49(1):59-64.
    PMID: 15929400
    Two Infectious bursal disease virus (IBDV) isolates, NP1SSH and NP2K were obtained from a severe infectious bursal disease (IBD) outbreak in Nepal in 2002. The hypervariable (HV) region of VP2 gene (1326 bp) of the isolates was generated by RT-PCR and sequenced. The obtained nucleotide sequences were compared with those of twenty other IBDV isolates/strains. Phylogenetic analysis based on this comparison revealed that NP1SSH and NP2K clustered with very virulent (vv) IBDV strains of serotype 1. In contrast, classical, Australian classical and attenuated strains of serotype 1 and avirulent IBDV strains of serotype 2 formed a different cluster. The deduced amino acid sequences of the two isolates showed a 98.3% identity with each other and 97.1% and 98.3% identities, respectively with very virulent IBDV (vvIBDV) isolates/strains. Three amino acids substitutions at positions 300 (E-->A), 308 (I-->F) and 334 (A-->P) within the HV region were common for both the isolates. The amino acids substitutions at positions 27 (S-->T), 28 (I-->T), 31 (D-->A), 36 (H-->Y), 135 (E-->G), 223 (G-->S), 225 (V-->I), 351 (L-->I), 352 (V-->E) and 399 (I-->S) for NP1SSH and at position 438 (I-->S) for NP2K were unique and differed from other IBDV isolates/strains. NP1SSH and NP2K showed highest similarity (97.8%) with the BD399 strain from Bangladesh as compared with other vvIBDV isolates/strains. We conclude that the NP1SSH and NP2K isolates of IBDV from Nepal represent vvIBDV of serotype 1.
    Matched MeSH terms: Poultry Diseases/virology*
  3. Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V
    Anim Health Res Rev, 2017 Jun;18(1):70-83.
    PMID: 28776490 DOI: 10.1017/S1466252317000044
    The poultry industry faces challenge amidst global food security crisis. Infectious bronchitis is one of the most important viral infections that cause huge economic loss to the poultry industry worldwide. The causative agent, infectious bronchitis virus (IBV) is an RNA virus with great ability for mutation and recombination; thus, capable of generating new virus strains that are difficult to control. There are many IBV strains found worldwide, including the Massachusetts, 4/91, D274, and QX-like strains that can be grouped under the classic or variant serotypes. Currently, information on the epidemiology, strain diversity, and global distribution of IBV has not been comprehensively reported. This review is an update of current knowledge on the distribution, genetic relationship, and diversity of the IBV strains found worldwide.
    Matched MeSH terms: Poultry Diseases/virology*
  4. Moeini H, Rahim RA, Omar AR, Shafee N, Yusoff K
    Appl Microbiol Biotechnol, 2011 Apr;90(1):77-88.
    PMID: 21181148 DOI: 10.1007/s00253-010-3050-0
    The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.
    Matched MeSH terms: Poultry Diseases/virology
  5. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    Arch Virol, 2010;155(1):63-70.
    PMID: 19898736 DOI: 10.1007/s00705-009-0540-4
    Sequence analysis of the fusion (F) gene of eight Malaysian NDV isolates showed that all the isolates were categorized as velogenic viruses, with the F cleavage site motif (112)R-R-Q-K-R(116) or (112)R-R-R-K-R(116) at the C-terminus of the F(2) protein and phenylalanine (F) at residue 117 at the N-terminus of the F(1) protein. Phylogenetic analysis revealed that all of the isolates were grouped in two distinct clusters under sub-genotype VIId. The isolates were about 4.8-11.7% genetically distant from sub-genotypes VIIa, VIIb, VIIc and VIIe. When the nucleotide sequences of the eight Malaysian isolates were compared phylogenetically to those of the old published local isolates, it was found that genotype VIII, VII, II and I viruses exist in Malaysia and caused sporadic infections. It is suggested that genotype VII viruses were responsible for most of the outbreaks in recent years.
    Matched MeSH terms: Poultry Diseases/virology*
  6. Ismail MI, Wei TS, Hair-Bejo M, Omar AR
    Arch Virol, 2020 Dec;165(12):2777-2788.
    PMID: 32964293 DOI: 10.1007/s00705-020-04812-2
    Besides the vaccine strains, the Malaysian variant (MV) and QX-like are the predominant IBVs detected on commercial poultry farms. These two virus strains are distinct based on genomic and pathogenicity studies. In this study, we determined the sequence of the S1 gene and compared the pathogenicity of serial passage 70 (P70) of Malaysian QX-like (QX/P70) and MV (MV/P70) strains with that of their respective wild-type viruses. The nucleotide and amino acid sequences of the complete S1 genes of QX/P70 and MV/P70 showed 1.4 to 1.6% and 3.0 to 3.3% variation, respectively, when compared to the wild-type virus. Most of the mutations were insertions and substitutions in the hypervariable regions (HVRs), primarily in HVR 3. Furthermore, selection pressure analysis showed that both viruses are under purifying selection. A pathogenicity study in specific-pathogen-free (SPF) chickens showed a reduction in respiratory and kidney lesions in chickens inoculated with MV/P70, but not with QX/P70, when compared to the respective wild-type viruses. However, MV/P70 is still pathogenic and can cause ciliary damage. In conclusion, the MV IBV strain is more responsive than the QX-like IBV strain following the attenuation process used for the development of a live attenuated IBV vaccine.
    Matched MeSH terms: Poultry Diseases/virology*
  7. Farhanah MI, Yasmin AR, Khanh NP, Yeap SK, Hair-Bejo M, Omar AR
    Arch Virol, 2018 Aug;163(8):2085-2097.
    PMID: 29626271 DOI: 10.1007/s00705-018-3841-7
    Very virulent infectious bursal disease virus (vvIBDV) targets B lymphocytes in the bursa of Fabricius (BF), causing immunosuppression and increased mortality rates in young birds. There have been few studies on the host immune response following vvIBDV infection at different inoculum doses in chickens with different genetic backgrounds. In this study, we characterized the immune responses of specific-pathogen-free (SPF) chickens and Malaysian red jungle fowl following infection with vvIBDV strain UPM0081 at 103.8 and 106.8 times the 50% embryo infectious dose (EID50). The viral burden, histopathological changes, immune cell populations, and expression of immune-related genes were measured and compared between infected and uninfected bursa at specific intervals. The populations of KUL1+, CD3+CD4+ and CD3+CD8+ cells were significantly increased in both types of chickens at 3 dpi, and there was significant early depletion of IgM+ B cells at 1 dpi in the red jungle fowl. vvIBDV infection also induced differential expression of genes that are involved in Th1 and pro-inflammatory responses, with groups receiving the higher dose (106.8 EID50) showing earlier expression of IFNG, IL12B, IL15, IL6, CXCLi2, IL28B, and TLR3 at 1 dpi. Although both chicken types showed equal susceptibility to infection, the red jungle fowl were clinically healthier than the SPF chickens despite showing more depletion of IgM+ B cells and failure to induce IFNB activation. In conclusion, high-dose vvIBDV infection caused an intense early host immune response in the infected bursa, with depletion of IgM+ B cells, bursal lesions, and cytokine expression as a response to mitigate the severity of the infection.
    Matched MeSH terms: Poultry Diseases/virology
  8. Tan DY, Hair-Bejo M, Omar AR, Aini I
    Avian Dis, 2004 Apr-Jun;48(2):410-6.
    PMID: 15283430
    The characteristics of the pathogenic infectious bursal disease virus (IBDV) that infected avian species other than commercial chickens were largely unknown. In this study, by using in vivo and molecular methods, we had characterized an IBDV isolate (named 94268) isolated from an infectious bursal disease (IBD) outbreak in Malaysian village chickens--the adulterated descendant of the Southeast Asian jungle fowl (Gallus bankiva) that were commonly reared in the backyard. The 94268 isolate was grouped as the very virulent IBDV (vvIBDV) strain because it caused severe lesions and a high mortality rate in village chickens (>88%) and experimentally infected specific-pathogen-free chickens (>66%). In addition, it possessed all of the vvIBDV molecular markers in its VP2 gene. Phylogenetic analysis using distance, maximum parsimony, and maximum likelihood methods revealed that 94268 was monophyletic with other vvIBDV isolates and closely related to the Malaysian vvIBDV isolates. Given that the VP2 gene of 94268 isolate was almost identical and evolutionarily closely related to other field IBDV isolates that affected the commercial chickens, we therefore concluded that IBD infections had spread across the farm boundary. IBD infection in the village chicken may represent an important part of the IBD epidemiology because these birds could harbor the vvIBDV strain and should not be overlooked in the control and prevention of the disease.
    Matched MeSH terms: Poultry Diseases/virology
  9. Craig MI, Rimondi A, Delamer M, Sansalone P, König G, Vagnozzi A, et al.
    Avian Dis, 2009 Sep;53(3):331-5.
    PMID: 19848068
    Chicken infectious anemia virus (CAV) is a worldwide-distributed infectious agent that affects commercial poultry. Although this agent was first detected in Argentina in 1994, no further studies on CAV in this country were reported after that. The recent increased occurrence of clinical cases of immunosuppression that could be caused by CAV has prompted this study. Our results confirmed that CAV is still circulating in commercial flocks in Argentina. Phylogenetic analysis focusing on the VP1 nucleotide sequence showed that all Argentinean isolates grouped together in a cluster, sharing a high similarity (> 97%) with genotype B reference strains. However, Argentinean isolates were distantly related to other strains commonly used for vaccination in this country, such as Del-Ros and Cux-1. Sequence analysis of predicted VP1 peptides showed that most of the Argentinean isolates have a glutamine residue at positions 139 and 144, suggesting that these isolates might have a reduced spread in cell culture compared with Cux-1. In addition, a particular amino acid substitution at position 290 is present in all studied Argentinean isolates, as well as in several VP1 sequences from Malaysia, Australia, and Japan isolates. Our results indicate that it is possible to typify CAV strains by comparison of VPI nucleotide sequences alone because the same tree topology was obtained when using the whole genome sequence. The molecular analysis of native strains sheds light into the epidemiology of CAV in Argentinean flocks. In addition, this analysis could be considered in future control strategies focused not only on breeders but on broilers and layer flocks.
    Matched MeSH terms: Poultry Diseases/virology*
  10. Gimeno IM, Cortes AL, Faiz N, Villalobos T, Badillo H, Barbosa T
    Avian Dis, 2016 09;60(3):662-8.
    PMID: 27610727 DOI: 10.1637/11415-040116-Reg.1
    Herpesvirus of turkeys (HVT) has been successfully used as a Marek's disease (MD) vaccine for more than 40 yr. Either alone (broiler chickens) or in combination with vaccines of other serotypes (broilers, broiler breeders, and layers), HVT is used worldwide. In recent years, several vector vaccines based on HVT (rHVT) have been developed. At present, there are both conventional HVT and rHVTs in the market, and it is unknown if all of them confer the same level of protection against MD. The objective of this study was to further characterize the protection conferred by two conventional HVTs (HVT-A and HVT-B) and three recombinant HVTs (rHVT-B, rHVT-C, and rHVT-D) against MD in broiler chickens. In a first study we evaluated the efficacy of two conventional HVTs (HVT-A and HVT-B) administered at different doses (475, 1500, and 4000 PFU) at day of age on the ability to protect against an early challenge with very virulent plus strain 645. In a second experiment we evaluated the protection ability of several HVTs (both conventional and recombinant) when administered in ovo at a dose of 1500 PFU using the same challenge model. Our results show that each HVT product is unique, regardless of being conventional or recombinant, in their ability to protect against MD and might require different PFUs to achieve its maximum efficacy. In Experiment 1, HVT-A at 4000 PFU conferred higher protection (protection index [PI] = 63) than any of the other vaccine protocols (PI ranging from 36 to 47). In Experiment 2, significant differences were found among vaccine protocols with PI varying from 66 (HVT-A) to 15 (rHVT-D). Our results show that each HVT is unique and age at vaccination and vaccine dose greatly affected vaccine efficacy. Furthermore, they highlight the need of following manufacturer's recommendations.
    Matched MeSH terms: Poultry Diseases/virology
  11. Yasmin AR, Yeap SK, Hair-Bejo M, Omar AR
    Avian Dis, 2016 12;60(4):739-751.
    PMID: 27902915
    Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.
    Matched MeSH terms: Poultry Diseases/virology
  12. Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK
    Avian Dis, 2019 06 01;63(2):275-288.
    PMID: 31251527 DOI: 10.1637/11936-072418-Reg.1
    Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
    Matched MeSH terms: Poultry Diseases/virology
  13. Thapa BR, Omar AR, Arshad SS, Hair-Bejo M
    Avian Pathol, 2004 Jun;33(3):359-63.
    PMID: 15223566
    Previously we have shown that avian leukosis virus subgroup J (ALV-J) might be present in chicken flocks from Malaysia based on serological study and also on detection of tissue samples with myelocytic infiltration. In this study, the polymerase chain reaction was used to detect ALV-J sequences from archived frozen samples. Out of 21 tissue samples examined, 16 samples were positive for proviral DNA and four samples for ALV-J RNA. However, only nine samples were found positive for myelocytic infiltration. A total of 465 base pairs equivalent to positions 5305 to 5769 of HPRS-103 from each of the viral RNA positive samples were characterized. Sequence analysis indicated that the samples showed high identity (95.9 to 98.2%) and were close to HPRS-103 with identities between 97.4 and 99.3%. This study indicates that ALV-J-specific sequences can be detected by polymerase chain reaction from frozen tissue samples with and without myelocytic infiltration.
    Matched MeSH terms: Poultry Diseases/virology*
  14. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: Poultry Diseases/virology
  15. Jaganathan S, Ooi PT, Phang LY, Allaudin ZN, Yip LS, Choo PY, et al.
    BMC Vet Res, 2015;11:219.
    PMID: 26293577 DOI: 10.1186/s12917-015-0537-z
    Newcastle disease virus remains a constant threat in commercial poultry farms despite intensive vaccination programs. Outbreaks attributed to ND can escalate and spread across farms and states contributing to major economic loss in poultry farms.
    Matched MeSH terms: Poultry Diseases/virology*
  16. Rasoli M, Yeap SK, Tan SW, Roohani K, Kristeen-Teo YW, Alitheen NB, et al.
    BMC Vet Res, 2015;11:75.
    PMID: 25884204 DOI: 10.1186/s12917-015-0377-x
    Very virulent infectious bursal disease virus (vvIBDV) induces immunosuppression and inflammation in young birds, which subsequently leads to high mortality. In addition, infectious bursal disease (IBD) is one of the leading causes of vaccine failure on farms. Therefore, understanding the immunopathogenesis of IBDV in both the spleen and the bursae could help effective vaccine development. However, previous studies only profiled the differential expression of a limited number of cytokines, in either the spleen or the bursae of Fabricius of IBDV-infected chickens. Thus, this study aims to evaluate the in vitro and in vivo immunoregulatory effects of vvIBDV infection on macrophage-like cells, spleen and bursae of Fabricius.
    Matched MeSH terms: Poultry Diseases/virology*
  17. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Comp Immunol Microbiol Infect Dis, 2004 Nov;27(6):433-43.
    PMID: 15325516
    Specific-pathogen-free (SPF) chickens infected with very virulent (vv) infectious bursal disease virus (IBDV) UPM94/273 developed lower pathogenicity compared to UPM97/61. Sequence analysis indicated that UPM94/273 is an exceptional vvIBDV. In this study, a SYBR Green I based real-time reverse transcriptase reaction assay was developed to measure viral RNA in the bursae of SPF chickens infected with IBDV. Specificity of the amplified products was confirmed by melting temperature analysis. A linear relationship was observed between the amount of input viral RNA and the threshold values for IBDV-specific product over five log10 dilutions. The viral RNA level following infection with UPM94/273 was significantly higher at day 1 and 2 post-inoculation (p.i.) compared to UPM97/61 infected chickens. However, chickens infected with UPM97/61 had significantly higher numbers of bursal cells undergoing apoptosis compared to UPM94/273 infected chickens. In both groups, the number of apoptotic cells and viral RNA levels peak at day 3 p.i. This study indicates that UPM97/61 and UPM94/273 have different efficiency of replication and percentage of apoptotic cells in bursae during the acute phase of IBDV infection.
    Matched MeSH terms: Poultry Diseases/virology*
  18. Rasoli M, Yeap SK, Tan SW, Moeini H, Ideris A, Bejo MH, et al.
    Comp Immunol Microbiol Infect Dis, 2014 Jan;37(1):11-21.
    PMID: 24225159 DOI: 10.1016/j.cimid.2013.10.003
    Newcastle disease (ND) is a highly contagious avian disease and one of the major causes of economic losses in the poultry industry. The emergence of virulent NDV genotypes and repeated outbreaks of NDV in vaccinated chickens have raised the need for fundamental studies on the virus-host interactions. In this study, the profiles of B and T lymphocytes and macrophages and differential expression of 26 immune-related genes in the spleen of specific-pathogen-free (SPF) chickens, infected with either the velogenic genotype VII NDV strain IBS002 or the genotype VIII NDV strain AF2240, were evaluated. A significant reduction in T lymphocyte population and an increase in the infiltration of IgM+ B cells and KUL01+ macrophages were detected in the infected spleens at 1, 3 and 4 days post-infection (dpi) (P<0.05). The gene expression profiles showed an up-regulation of CCLi3, CXCLi1, CXCLi2 (IL-8), IFN-γ, IL-12α, IL-18, IL-1β, IL-6, iNOS, TLR7, MHCI, IL-17F and TNFSF13B (P<0.05). However, these two genotypes showed different cytokine expression patterns and viral load. IBS002 showed higher viral load than AF2240 in spleen at 3 and 4dpi and caused a more rapid up-regulation of CXCLi2, IFN-γ, IL-12α, IL-18, IL-1β, iNOS and IL-10 at 3dpi. Meanwhile, the expression levels of CCLI3, CXCLi1, IFN-γ, IL-12α, IL-1β and iNOS genes were significantly higher in AF2240 at 4dpi. In addition, the expression levels of IL-10 were significantly higher in the IBS002-infected chickens at 3 and 4dpi. Hence, infection with velogenic genotype VII and VIII NDV induced different viral load and production of cytokines and chemokines associated with inflammatory reactions.
    Matched MeSH terms: Poultry Diseases/virology
  19. Mohd Isa F, Ahmed Al-Haj N, Mat Isa N, Ideris A, Powers C, Oladapo O, et al.
    PMID: 31837598 DOI: 10.1016/j.cimid.2019.101399
    Among different inbred chickens' lines, we previously showed that lines P and N of Institute for Animal Health, Compton, UK are the most susceptible and the least affected lines, respectively, following infection with very virulent infectious bursal disease virus (vvIBDV). In this study, the differential expressions of 29 different immune-related genes were characterized. Although, birds from both lines succumbed to infection, line P showed greater bursal lesion scores and higher viral copy numbers compared to line N. Interestingly, line N showed greater down-regulation of B cell related genes (BLNK, TNFSF13B and CD72) compared to line P. While up-regulation of T-cell related genes (CD86 and CTLA4) and Th1 associated cytokines (IFNG, IL2, IL12A and IL15) were documented in both lines, the expression levels of these genes were different in the two lines. Meanwhile, the expression of IFN-related genes IFNB, STAT1, and IRF10, but not IRF5, were up-regulated in both lines. The expression of pro-inflammatory cytokines (IL1B, IL6, IL18, and IL17) and chemokines (CXCLi2, CCL4, CCL5 and CCR5) were up-regulated in both lines with greater increase documented in line P compared to line N. Strikingly, the expression of IL12B was detected only in line P whilst the expression of IL15RA was detected only in line N. In conclusion, the bursal immunopathology of IBDV correlates more with expression of proinflammatory response related genes and does not related to expression of B-cell related genes.
    Matched MeSH terms: Poultry Diseases/virology
  20. Jahromi MZ, Bello MB, Abdolmaleki M, Yeap SK, Hair-Bejo M, Omar AR
    Dev Comp Immunol, 2018 10;87:116-123.
    PMID: 29886054 DOI: 10.1016/j.dci.2018.06.004
    To gain insights into the role of CD3-/28.4+ intraepithelial lymphocytes-natural killer (CD3-/28.4+IEL-NK) cells during infectious bursal disease virus (IBDV) infection, characterisation of the cells was performed following infection with different strains of the virus. In vitro treatment with IL-18 or ionomycin/PMA successfully stimulated and activated the cells via a significant increase in the expression of CD69, B-Lec, CHIR-AB1 and NK-lysin. Similarly, chickens infected with the vaccine strain of IBDV also up-regulated the expression of CD69, B-Lec, CHIR-AB1 and NK-lysin in CD3-/28.4+ IEL-NK cells up to 3 days post infection (dpi) and down-regulated the expression of the inhibitory receptor B-NK at 3 dpi. On the contrary, infection with the very virulent IBDV (vvIBDV) strain lead to a reduced activation of the cells by down-regulating the expression of the CD69, CHIR-AB1 and NK-lysin especially at 1 dpi. These findings altogether demonstrate the differential activation of CD3-/28.4+IEL-NK cells in chicken following infection with the vaccine or very virulent strains of IBDV. The study therefore provides an important clue into the differential pathogenesis of IBDV infection in chicken. Further studies are however required to determine the functional importance of these findings during IBDV vaccination and infection.
    Matched MeSH terms: Poultry Diseases/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links