Displaying all 5 publications

Abstract:
Sort:
  1. Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, et al.
    J Proteome Res, 2012 Jan 1;11(1):224-36.
    PMID: 22129229 DOI: 10.1021/pr2008626
    To date, no genome of any of the species from the genus Spiroplasma has been completely sequenced. Long repetitive sequences similar to mobile units present a major obstacle for current genome sequencing technologies. Here, we report the assembly of the Spiroplasma melliferum KC3 genome into 4 contigs, followed by proteogenomic annotation and metabolic reconstruction based on the discovery of 521 expressed proteins and comprehensive metabolomic profiling. A systems approach allowed us to elucidate putative pathogenicity mechanisms and to discover major virulence factors, such as Chitinase utilization enzymes and toxins never before reported for insect pathogenic spiroplasmas.
    Matched MeSH terms: Spiroplasma/genetics*; Spiroplasma/metabolism; Spiroplasma/physiology
  2. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Spiroplasma/enzymology*
  3. Nejat N, Vadamalai G, Dickinson M
    Int J Mol Sci, 2012;13(2):2301-2313.
    PMID: 22408455 DOI: 10.3390/ijms13022301
    Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.
    Matched MeSH terms: Spiroplasma citri/pathogenicity*
  4. Boyko K, Gorbacheva M, Rakitina T, Korzhenevskiy D, Vanyushkina A, Kamashev D, et al.
    Acta Crystallogr F Struct Biol Commun, 2015 Jan 01;71(Pt 1):24-7.
    PMID: 25615963 DOI: 10.1107/S2053230X14025333
    HU proteins belong to the nucleoid-associated proteins (NAPs) that are involved in vital processes such as DNA compaction and reparation, gene transcription etc. No data are available on the structures of HU proteins from mycoplasmas. To this end, the HU protein from the parasitic mycoplasma Spiroplasma melliferum KC3 was cloned, overexpressed in Escherichia coli and purified to homogeneity. Prismatic crystals of the protein were obtained by the vapour-diffusion technique at 4°C. The crystals diffracted to 1.36 Å resolution (the best resolution ever obtained for a HU protein). The diffraction data were indexed in space group C2 and the structure of the protein was solved by the molecular-replacement method with one monomer per asymmetric unit.
    Matched MeSH terms: Spiroplasma*
  5. Nejat N, Vadamalai G, Sijam K, Dickinson M
    Plant Dis, 2011 Oct;95(10):1312.
    PMID: 30731679 DOI: 10.1094/PDIS-03-11-0251
    Madagascar periwinkle, Catharanthus roseus (L.) G. Don, is a member of the Apocynaceae plant family that is native to Madagascar and produces dimeric terpenoid indole alkaloids that are used in the treatment of hypertension and cancer. Periwinkle as an indicator plant is highly susceptible to phytoplasmas and spiroplasma infection from different crops, and has been found to be naturally infected with spiroplasmas in Arizona, California, and the Mediterranean countries. In this study, surveys of suspected diseased periwinkles were conducted in various regions of Selangor State, Malaysia. Periwinkles showing rapid decline in the number and size of the flowers, premature abscission of buds and flowers, reduction in leaf size, chlorosis of the leaf tips and margins, general chlorosis, and stunting and dying plants were collected. These symptoms were widespread on periwinkle in this state. Diagnosis of the disease was based on symptomatology, grafting, serology (ELISA), PCR techniques, and cultivation. Tests for transmission by grafting were conducted using symptomatic periwinkle plants. Symptoms were induced on all eight graft-inoculated healthy periwinkles approximately 2 weeks after side grafting. Preliminary examination was performed by ELISA with Spiroplasma citri Saglio polyclonal antibody that was prepared against an Iranian S. citri isolate (H. Rahimian, unpublished data). Leaf extracts of all 24 symptomatic periwinkles gave positive ELISA reactions at OD405 readings ranging from 0.310 to 0.654 to the antibody against S. citri by the indirect ELISA method. Six healthy periwinkle leaves gave OD405 readings around 0.128. Total nucleic acids were extracted from 10 symptomatic and 5 asymptomatic plants (4). PCR using the ScR16F1/ScR16R1 primer pair designed to detect S. citri in carrot and P1/P7 and secA for1/rev3 primer pairs designed for identification of phytoplasmas were used to detect the causal agent (1-3). Amplification failed when the P1/P7 universal phytoplasma primer pair was used for diseased samples. However, the PCR assays resulted in products of 1,833 and 800 bp with ScR16F1/ScR16R1 and secA for1/rev3, respectively. Five of each ScR16F1/ScR16R1 and SecAfor1/SecArev3 products were cloned with the Topo TA cloning kit (Invitrogen, Carlsbad, CA), sequenced, and deposited as GenBank Accession Nos. HM015669 and FJ011099, respectively. Sequences for both genes indicated that S. citri was associated with the disease on periwinkle. ScR16F1/ScR16R1 products cloned from symptomatic periwinkles had 98% sequence identity with S. citri (GenBank Accession No. AM285316), while nucleotide sequences of SecAfor1/SecArev3 products had 88% sequence identity with S. citri GII3-3X (GenBank Accession No. AM285304). S. citri was cultivated from 10 S. citri-infected periwinkles using filtration and SP-4 media. Twenty culture tubes started to change culture medium color from red to yellow 1 month after cultivation. Helical and motile S. citri was observed in the dark-field microscope. To our knowledge, this is the first report on the presence and occurrence of S. citri in Southeast Asia and its association with lethal yellows on periwinkle in Malaysia. References: (1) J. Hodgetts et al. Int. J. Syst. Evol. Microbiol. 58:1826, 2008. (2) I.-M. Lee et al. Phytopathology 85:728, 1995. (3) I.-M. Lee et al. Plant Dis. 90:989, 2006. (4) Y.-P. Zhang et al. J. Virol. Methods. 71:45, 1998.
    Matched MeSH terms: Spiroplasma; Spiroplasma citri
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links