Displaying all 5 publications

Abstract:
Sort:
  1. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology*
  2. Somasundaram B, Chang C, Fan YY, Lim PY, Cardosa J, Lua L
    Methods, 2016 Feb 15;95:38-45.
    PMID: 26410190 DOI: 10.1016/j.ymeth.2015.09.023
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology
  3. Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al.
    Immunity, 2019 05 21;50(5):1305-1316.e6.
    PMID: 30979688 DOI: 10.1016/j.immuni.2019.03.010
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology
  4. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology*
  5. Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, et al.
    Immunity, 2017 05 16;46(5):777-791.e10.
    PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011
    Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links