Displaying all 10 publications

Abstract:
Sort:
  1. Yong CY, Liew WPP, Ong HK, Poh CL
    Biotechnol Prog, 2022 Nov;38(6):e3292.
    PMID: 35932092 DOI: 10.1002/btpr.3292
    Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.
    Matched MeSH terms: Vaccines, Virus-Like Particle*
  2. Salmons B, Lim PY, Djurup R, Cardosa J
    Vaccine, 2018 10 29;36(45):6623-6630.
    PMID: 30293762 DOI: 10.1016/j.vaccine.2018.09.062
    A candidate hand, foot, and mouth disease vaccine comprising of human enterovirus A71 (EV-A71) virus-like particles (VLPs) was tested in rabbits to evaluate the potential local and systemic effects of this vaccine. The rabbits received more than double the full human dose and one additional dose according to the n + 1 recommended scheme. The three doses were given mixed with Alhydrogel adjuvant as intramuscular (IM) injections. Vaccinations were well-tolerated, with no indication of overt toxicity in any parameter observed. An EV-A71 specific immune response in the form of antibodies that specifically reacted with the virus capsid proteins VP1 and VP0, the complete VLP, and EV-A71 viruses of different subgenotypes to that of the vaccine could be demonstrated. A boosting effect in the form of higher EV-A71 specific antibody titers was observed after the subsequent doses, and these enhanced titers were shown to be statistically significant in one-way ANOVA analyses. Fortnightly intramuscular administration of EV-A71 VLP vaccine did not result in any test article-related changes in immunotoxicity as defined by increased serum IL-6, and in general IL-6 concentrations remained below the lower limit of quantitation for the majority of animals throughout the study. Although increased indicators of inflammation at the injection site were observed in animals sacrificed immediately after the last vaccination, these largely reversed at the end of the recovery phase. No findings suggestive of systemic or delayed toxicity were recorded in this independently conducted study. In conclusion, repeated IM administration of the EV-A71 VLP vaccine were locally and systemically well-tolerated in rabbits and immunogenic, supporting the clinical development of the vaccine.
    Matched MeSH terms: Vaccines, Virus-Like Particle/administration & dosage*; Vaccines, Virus-Like Particle/therapeutic use*
  3. Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS
    Biotechnol Prog, 2017 Mar;33(2):549-557.
    PMID: 27860432 DOI: 10.1002/btpr.2409
    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
    Matched MeSH terms: Vaccines, Virus-Like Particle/biosynthesis*; Vaccines, Virus-Like Particle/genetics; Vaccines, Virus-Like Particle/chemistry*
  4. Lim PY, Cardosa MJ
    J Virol Methods, 2019 08;270:113-119.
    PMID: 31100287 DOI: 10.1016/j.jviromet.2019.05.005
    The goal of this paper was to develop a sandwich ELISA that can detect intact human enterovirus A71 (EV-A71) virus-like particles (VLPs) in vaccines. This assay specifically detected EV-A71 viruses from different sub-genogroups as well as EV-A71 VLPs, and treatment of VLPs with high heat and low pH reduced or completely abolished detection of the VLPs suggesting that the ELISA detected assembled particles. Using a purified VLP as a reference standard, a quantitative sandwich ELISA (Q-ELISA) was established which was used to monitor the yield and purity of the VLPs during manufacturing. Coupled with immunogenicity studies, the Q-ELISA was used to evaluate the performance of the VLPs and formalin-inactivated EV-A71 vaccine. This assay has the potential to play an important role in the development of an efficient process to produce and purify the VLPs and in examining the quality of EV-A71 vaccines.
    Matched MeSH terms: Vaccines, Virus-Like Particle/standards*
  5. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
    Matched MeSH terms: Vaccines, Virus-Like Particle/administration & dosage; Vaccines, Virus-Like Particle/immunology*
  6. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS
    Sci Rep, 2018 05 31;8(1):8499.
    PMID: 29855618 DOI: 10.1038/s41598-018-26749-y
    Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient's appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
    Matched MeSH terms: Vaccines, Virus-Like Particle/administration & dosage*; Vaccines, Virus-Like Particle/metabolism
  7. Somasundaram B, Chang C, Fan YY, Lim PY, Cardosa J, Lua L
    Methods, 2016 Feb 15;95:38-45.
    PMID: 26410190 DOI: 10.1016/j.ymeth.2015.09.023
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine.
    Matched MeSH terms: Vaccines, Virus-Like Particle/biosynthesis*; Vaccines, Virus-Like Particle/genetics; Vaccines, Virus-Like Particle/immunology
  8. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
    Matched MeSH terms: Vaccines, Virus-Like Particle/administration & dosage; Vaccines, Virus-Like Particle/genetics; Vaccines, Virus-Like Particle/immunology*
  9. Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, et al.
    Immunity, 2017 05 16;46(5):777-791.e10.
    PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011
    Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology; Vaccines, Virus-Like Particle/metabolism; Vaccines, Virus-Like Particle/chemistry
  10. Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al.
    Immunity, 2019 05 21;50(5):1305-1316.e6.
    PMID: 30979688 DOI: 10.1016/j.immuni.2019.03.010
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
    Matched MeSH terms: Vaccines, Virus-Like Particle/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links