METHODS: A nested case-control study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. Serum zinc and copper levels were measured in baseline blood samples by total reflection X-ray fluorescence in cancer cases (HCC n=106, IHDB n=34, GBTC n=96) and their matched controls (1:1). The Cu/Zn ratio, an indicator of the balance between the micronutrients, was computed. Multivariable adjusted odds ratios and 95% confidence intervals (OR; 95% CI) were used to estimate cancer risk.
RESULTS: For HCC, the highest vs lowest tertile showed a strong inverse association for zinc (OR=0.36; 95% CI: 0.13-0.98, Ptrend=0.0123), but no association for copper (OR=1.06; 95% CI: 0.45-2.46, Ptrend=0.8878) in multivariable models. The calculated Cu/Zn ratio showed a positive association for HCC (OR=4.63; 95% CI: 1.41-15.27, Ptrend=0.0135). For IHBC and GBTC, no significant associations were observed.
CONCLUSIONS: Zinc may have a role in preventing liver-cancer development, but this finding requires further investigation in other settings.
OBJECTIVES: To assess the effect of zinc supplementation in the treatment of thalassaemia and sickle cell disease.
SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 01 February 2013.
SELECTION CRITERIA: Randomised, placebo-controlled trials of zinc supplements for treating thalassaemia or sickle cell disease administered at least once a week for at least a month.
DATA COLLECTION AND ANALYSIS: Two review authors assessed the eligibility and risk of bias of the included trials, extracted and analysed data and wrote the review. We summarised results using risk ratios or rate ratios for dichotomous data and mean differences for continuous data. We combined trial results where appropriate.
MAIN RESULTS: We identified nine trials for inclusion with all nine contributing outcome data. Two trials reported on people with thalassaemia (n = 152) and seven on sickle cell anaemia (n = 307).In people with thalassaemia, in one trial, the serum zinc level value showed no difference between the zinc supplemented group and the control group, mean difference 47.40 (95% confidence interval -12.95 to 107.99). Regarding anthropometry, in one trial, height velocity was significantly increased in patients who received zinc supplementation for one to seven years duration, mean difference 3.37 (95% confidence interval 2.36 to 4.38) (total number of participants = 26). In one trial, however, there was no difference in body mass index between treatment groups.Zinc acetate supplementation for three months (in one trial) and one year (in two trials) (total number of participants = 71) was noted to increase the serum zinc level significantly in patients with sickle cell anaemia, mean difference 14.90 (95% confidence interval 6.94 to 22.86) and 20.25 (95% confidence interval 11.73 to 28.77) respectively. There was no significant difference in haemoglobin level between intervention and control groups, at either three months (one trial) or one year (one trial), mean difference 0.06 (95% confidence interval -0.84 to 0.96) and mean difference -0.07 (95% confidence interval -1.40 to 1.26) respectively. Regarding anthropometry, one trial showed no significant changes in body mass index or weight after one year of zinc acetate supplementation. In patients with sickle cell disease, the total number of sickle cell crises at one year were significantly decreased in the zinc sulphate supplemented group as compared to controls, mean difference -2.83 (95% confidence interval -3.51 to -2.15) (total participants 130), but not in zinc acetate group, mean difference 1.54 (95% confidence interval -2.01 to 5.09) (total participants 22). In one trial at three months and another at one year, the total number of clinical infections were significantly decreased in the zinc supplemented group as compared to controls, mean difference 0.05 (95% confidence interval 0.01 - 0.43) (total number of participants = 36), and mean difference -7.64 (95% confidence interval -10.89 to -4.39) (total number of participants = 21) respectively.
AUTHORS' CONCLUSIONS: According to the results, there is no evidence from randomised controlled trials to indicate any benefit of zinc supplementation with regards to serum zinc level in patients with thalassaemia. However, height velocity was noted to increase among those who received this intervention.There is mixed evidence on the benefit of using zinc supplementation in people with sickle cell disease. For instance, there is evidence that zinc supplementation for one year increased the serum zinc levels in patients with sickle cell disease. However, though serum zinc level was raised in patients receiving zinc supplementation, haemoglobin level and anthropometry measurements were not significantly different between groups. Evidence of benefit is seen with the reduction in the number of sickle cell crises among sickle cell patients who received one year of zinc sulphate supplementation and with the reduction in the total number of clinical infections among sickle cell patients who received zinc supplementation for both three months and for one year.The conclusion is based on the data from a small group of trials,which were generally of good quality, with a low risk of bias. The authors recommend that more trials on zinc supplementation in thalassaemia and sickle cell disease be conducted given that the literature has shown the benefits of zinc in these types of diseases.