OBJECTIVE:
To describe and provide audiovisual documentation of a syndrome of polymyoclonus, laryngospasm, and cerebellar ataxia associated with adenocarcinoma and multiple neural cation channel autoantibodies.
DESIGN:
Case report with video.
SETTING:
University hospitals. Patient A 69-year-old woman presented with subacute onset of whole-body tremulousness and laryngospasm attributed to gastroesophageal reflux.
RESULTS:
Further evaluation revealed polymyoclonus, cerebellar ataxia, and laryngospasm suspicious of an underlying malignant neoplasm. Surface electromyography of multiple limb muscles confirmed the presence of polymyoclonus. The patient was seropositive for P/Q-type voltage-gated calcium channel antibody; subsequently, whole-body fluorine 18 fluorodeoxyglucose positron emission tomography and cervical lymph node biopsy revealed widespread metastatic adenocarcinoma. Follow-up serologic evaluation revealed calcium channel antibodies (P/Q type and N type) and potassium channel antibody.
CONCLUSIONS:
We highlight the importance of recognizing polymyoclonus. To our knowledge, this is also the first description of a syndrome of polymyoclonus, laryngospasm, and ataxia associated with adenocarcinoma and these cation channel antibodies.
The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
This study determined how sociocultural messages to change one's body are perceived by adolescents from different cultural groups. In total, 4904 adolescents, including Australian, Chilean, Chinese, Indo-Fijian, Indigenous Fijian, Greek, Malaysian, Chinese Malaysian, Tongans in New Zealand, and Tongans in Tonga, were surveyed about messages from family, peers, and the media to lose weight, gain weight, and increase muscles. Groups were best differentiated by family pressure to gain weight. Girls were more likely to receive the messages from multiple sociocultural sources whereas boys were more likely to receive the messages from the family. Some participants in a cultural group indicated higher, and others lower, levels of these sociocultural messages. These findings highlight the differences in sociocultural messages across cultural groups, but also that adolescents receive contrasting messages within a cultural group. These results demonstrate the difficulty in representing a particular message as being characteristic of each cultural group.
The present study tested the hypothesis that men's drive for muscularity would be associated with their valuation of domination, power, status, and aggression over others. A community sample of 359 men from London, UK, completed measures of drive for muscularity, social dominance orientation, right-wing authoritarianism, trait aggression, and need for power, as well as their demographic details. Bivariate correlations showed that greater drive for muscularity was significantly correlated with most of the measures and their subscales. However, in a multiple regression analysis, the only significant predictor of drive for muscularity was support for group-based dominance hierarchies (Adj. R(2)=.17). These results suggest that men's drive for muscularity is associated with a socio-political ideology that favours social dominance.
Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird's nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it's effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates. A total of 166 and 262 differentially expressed protein-coding genes (DEGs) were identified in the soleus and EDL muscles, respectively. The partial trisomy of MMU16 in Ts1Cje mice has a greater effect on gene expression in EDL. Top-down clustering analysis of all DEGs for represented functional ontologies revealed 5 functional clusters in soleus associated with signal transduction, development of reproductive system, nucleic acid biosynthesis, protein modification and metabolism as well as regulation of gene expression. On the other hand, only 3 functional clusters were observed for EDL namely neuron and cell development, protein modification and metabolic processes as well as ion transport. A total of 11 selected DEGs were validated using qPCR (disomic DEGs: Mansc1; trisomic DEGs: Itsn1, Rcan1, Synj1, Donson, Dyrk1a, Ifnar1, Ifnar2, Runx1, Sod1 and Tmem50b). The validated DEGs were implicated in neuromuscular junction signalling (Itsn1, Syn1), oxidative stress (Sod1, Runx1) and chronic inflammation processes (Runx1, Rcan1, Ifnar1, Ifnar2). Other validated DEGs have not been well-documented as involved in the skeletal muscle development or function, thus serve as interesting novel candidates for future investigations. To our knowledge, the study was the first attempt to determine the transcriptomic profiles of both soleus and EDL muscles in Ts1Cje mice. It provides new insights on the possible disrupted molecular pathways associated with hypotonia in DS individuals.
Zingiber officinale (ZO), commonly known as ginger, has been traditionally used in the treatment of diabetes mellitus. Several studies have reported the hypoglycaemic properties of ginger in animal models. The present study evaluated the antihyperglycaemic effect of its aqueous extract administered orally (daily) in three different doses (100, 300, 500 mg/kg body weight) for a period of 30 d to streptozotocin (STZ)-induced diabetic rats. A dose-dependent antihyperglycaemic effect revealed a decrease of plasma glucose levels by 38 and 68 % on the 15th and 30th day, respectively, after the rats were given 500 mg/kg. The 500 mg/kg ZO significantly (P<0·05) decreased kidney weight (% body weight) in ZO-treated diabetic rats v. control rats, although the decrease in liver weight (% body weight) was not statistically significant. Kidney glycogen content increased significantly (P<0·05) while liver and skeletal muscle glycogen content decreased significantly (P<0·05) in diabetic controls v. normal controls. ZO (500 mg/kg) also significantly decreased kidney glycogen (P<0·05) and increased liver and skeletal muscle glycogen in STZ-diabetic rats when compared to diabetic controls. Activities of glucokinase, phosphofructokinase and pyruvate kinase in diabetic controls were decreased by 94, 53 and 61 %, respectively, when compared to normal controls; and ZO significantly increased (P<0·05) those enzymes' activities in STZ-diabetic rats. Therefore, the present study showed that ginger is a potential phytomedicine for the treatment of diabetes through its effects on the activities of glycolytic enzymes.
Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords "Catalpol", "Type 1 diabetes mellitus", "Type 2 diabetes mellitus", and "diabetic complications". Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
Catalpol was tested for various disorders including diabetes mellitus. Numerous molecular mechanisms have emerged supporting its biological effects but with little information towards its insulin sensitizing effect. In this study, we have investigated its effect on skeletal muscle mitochondrial respiration and insulin signaling pathway. Type-2 diabetes (T2DM) was induced in male C57BL/6 by a high fat diet (60% Kcal) and streptozotocin (50 mg/kg, i.p.). Diabetic mice were orally administered with catalpol (100 and 200 mg/kg), metformin (200 mg/kg), and saline for four weeks. Fasting blood glucose (FBG), HbA1c, plasma insulin, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), oxygen consumption rate, gene (IRS-1, Akt, PI3k, AMPK, GLUT4, and PGC-1α) and protein (AMPK, GLUT4, and PPAR-γ) expression in muscle were measured. Catalpol (200 mg/kg) significantly (p < 0.05) reduced the FBG, HbA1C, HOMA_IR index, and AUC of OGTT whereas, improved the ITT slope. Gene (IRS-1, Akt, PI3k, GLUT4, AMPK, and PGC-1α) and protein (AMPK, p-AMPK, PPAR-γ and GLUT4) expressions, as well as augmented state-3 respiration, oxygen consumption rate, and citrate synthase activity in muscle was observed in catalpol treated mice. The antidiabetic activity of catalpol is credited with a marked improvement in insulin sensitivity and mitochondrial respiration through the insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation in the skeletal muscle of T2DM mice.
Poor appetite could be indicative of protein energy wasting (PEW) and experts recommend assessing appetite in dialysis patients. Our study aims to determine the relationship between PEW and appetite in haemodialysis (HD) patients.