Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus), shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of vessel collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated potential collision mitigation options estimated a minimal impact to industry, as most whale shark core habitat areas were relatively small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to collision mitigation is needed within priority whale shark habitats to ensure collision protection for the species.
We present the first measurements of absolute branching fractions of Ξ_{c}^{0} decays into Ξ^{-}π^{+}, ΛK^{-}π^{+}, and pK^{-}K^{-}π^{+} final states. The measurements are made using a dataset comprising (772±11)×10^{6} BB[over ¯] pairs collected at the ϒ(4S) resonance with the Belle detector at the KEKB e^{+}e^{-} collider. We first measure the absolute branching fraction for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} using a missing-mass technique; the result is B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})=(9.51±2.10±0.88)×10^{-4}. We subsequently measure the product branching fractions B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→Ξ^{-}π^{+}), B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→ΛK^{-}π^{+}), and B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+}) with improved precision. Dividing these product branching fractions by the result for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} yields the following branching fractions: B(Ξ_{c}^{0}→Ξ^{-}π^{+})=(1.80±0.50±0.14)%, B(Ξ_{c}^{0}→ΛK^{-}π^{+})=(1.17±0.37±0.09)%, and B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+})=(0.58±0.23±0.05)%. For the above branching fractions, the first uncertainties are statistical and the second are systematic. Our result for B(Ξ_{c}^{0}→Ξ^{-}π^{+}) can be combined with Ξ_{c}^{0} branching fractions measured relative to Ξ_{c}^{0}→Ξ^{-}π^{+} to yield other absolute Ξ_{c}^{0} branching fractions.
We report on the first Belle search for a light CP-odd Higgs boson, A^{0}, that decays into low mass dark matter, χ, in final states with a single photon and missing energy. We search for events produced via the dipion transition ϒ(2S)→ϒ(1S)π^{+}π^{-}, followed by the on-shell process ϒ(1S)→γA^{0} with A^{0}→χχ, or by the off-shell process ϒ(1S)→γχχ. Utilizing a data sample of 157.3×10^{6} ϒ(2S) decays, we find no evidence for a signal. We set limits on the branching fractions of such processes in the mass ranges M_{A^{0}}<8.97 GeV/c^{2} and M_{χ}<4.44 GeV/c^{2}. We then use the limits on the off-shell process to set competitive limits on WIMP-nucleon scattering in the WIMP mass range below 5 GeV/c^{2}.
We report the results of a search for the rare, purely leptonic decay B^{-}→μ^{-}ν[over ¯]_{μ} performed with a 711 fb^{-1} data sample that contains 772×10^{6} BB[over ¯] pairs, collected near the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The signal events are selected based on the presence of a high momentum muon and the topology of the rest of the event showing properties of a generic B-meson decay, as well as the missing energy and momentum being consistent with the hypothesis of a neutrino from the signal decay. We find a 2.4 standard deviation excess above background including systematic uncertainties, which corresponds to a branching fraction of B(B^{-}→μ^{-}ν[over ¯]_{μ})=(6.46±2.22±1.60)×10^{-7} or a frequentist 90% confidence level interval on the B^{-}→μ^{-}ν[over ¯]_{μ} branching fraction of [2.9,10.7]×10^{-7}.
We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6}BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6}BB[over ¯] pairs recorded by the Belle detector. The results of the measurement are sin2β=0.80±0.14(stat)±0.06(syst)±0.03(model) and cos2β=0.91±0.22(stat)±0.09(syst)±0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is β=[22.5±4.4(stat)±1.2(syst)±0.6(model)]°. The measurement assumes no direct CP violation in B^{0}→D^{(*)}h^{0} decays. The quoted model uncertainties are due to the composition of the D^{0}→K_{S}^{0}π^{+}π^{-} decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e^{+}e^{-}→cc[over ¯] data sample. CP violation is observed in B^{0}→D^{(*)}h^{0} decays at the level of 5.1 standard deviations. The significance for cos2β>0 is 3.7 standard deviations. The trigonometric multifold solution π/2-β=(68.1±0.7)° is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst) GeV, with a total uncertainty of 0.33 GeV.