Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Teoh BT, Sam SS, Abd-Jamil J, AbuBakar S
    Emerg Infect Dis, 2010 Nov;16(11):1783-5.
    PMID: 21029545 DOI: 10.3201/eid1611.100721
    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle.
  2. Sam SS, Mohamed-Romai-Noor NA, Teoh BT, Hamim ZR, Ng HY, Abd-Jamil J, et al.
    Emerg Infect Dis, 2022 Feb;28(2):475-477.
    PMID: 35076371 DOI: 10.3201/eid2802.204887
    A new Getah virus (GETV) strain, B254, was isolated from Culex fuscocephalus mosquitoes captured at Mount Ophir, Malaysia, in 2012. Phylogenetic analyses revealed that GETV B254 is distinct from the old Malaysia GETV MM2021 strain but closely related to group IV GETV from Russia (LEIV16275Mag), China (YN12031), and Thailand (GETV/SW/Thailand/2017).
  3. Loong SK, Teoh BT, Johari J, Khor CS, Abd-Jamil J, Nor'e SS, et al.
    Case Rep Infect Dis, 2017;2017:2578082.
    PMID: 28331641 DOI: 10.1155/2017/2578082
    Bacillus anthracis is a bacterial pathogen of major concern. The spores of this bacteria can survive harsh environmental conditions for extended periods and are well recognized as a potential bioterror weapon with significant implications. Accurate and timely identification of this Bacillus species in the diagnostic laboratory is essential for disease and public health management. Biosafety Level 3 measures and ciprofloxacin treatment were instituted when B. anthracis was suspected from a patient with gangrenous foot. 16S rDNA sequencing was performed to accurately identify the suspected bacterium, due to the superiority of this method to accurately identify clinically isolated bacteria. B. megaterium was identified as the causative agent and the organism was subsequently treated as a Biosafety Level 2 pathogen.
  4. Johari J, Hontz RD, Pike BL, Husain T, Chong CK, Rusli N, et al.
    BMJ Open, 2021 08 26;11(8):e050901.
    PMID: 34446498 DOI: 10.1136/bmjopen-2021-050901
    INTRODUCTION: Middle East respiratory syndrome (MERS) is a viral respiratory infection caused by the MERS-CoV. MERS was first reported in the Kingdom of Saudi Arabia in 2012. Every year, the Hajj pilgrimage to Mecca attracts more than two million pilgrims from 184 countries, making it one of the largest annual religious mass gatherings (MGs) worldwide. MGs in confined areas with a high number of pilgrims' movements worldwide continues to elicit significant global public health concerns. MERCURIAL was designed by adopting a seroconversion surveillance approach to provide multiyear evidence of MG-associated MERS-CoV seroconversion among the Malaysian Hajj pilgrims.

    METHODS AND ANALYSIS: MERCURIAL is an ongoing multiyear prospective cohort study. Every year, for the next 5 years, a cohort of 1000 Hajj pilgrims was enrolled beginning in the 2016 Hajj pilgrimage season. Pre-Hajj and post-Hajj serum samples were obtained and serologically analysed for evidence of MERS-CoV seroconversion. Sociodemographic data, underlying medical conditions, symptoms experienced during Hajj pilgrimage, and exposure to camel and untreated camel products were recorded using structured pre-Hajj and post-Hajj questionnaires. The possible risk factors associated with the seroconversion data were analysed using univariate and multivariate logistic regression. The primary outcome of this study is to better enhance our understanding of the potential threat of MERS-CoV spreading through MG beyond the Middle East.

    ETHICS AND DISSEMINATION: This study has obtained ethical approval from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia. Results from the study will be submitted for publication in peer-reviewed journals and presented in conferences and scientific meetings.

    TRIAL REGISTRATION NUMBER: NMRR-15-1640-25391.

  5. Abd-Jamil J, Teoh BT, Hassan EH, Roslan N, Abubakar S
    BMC Pediatr, 2010;10:46.
    PMID: 20594359 DOI: 10.1186/1471-2431-10-46
    There are at least 51 adenovirus serotypes (AdV) known to cause human infections. The prevalence of the different human AdV (HAdV) serotypes varies among different regions. Presently, there are no reports of the prevalent HAdV types found in Malaysia. The present study was undertaken to identify the HAdV types associated primarily with respiratory tract infections (RTI) of young children in Malaysia.
  6. Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, et al.
    BMC Infect Dis, 2020 Dec 11;20(1):947.
    PMID: 33308203 DOI: 10.1186/s12879-020-05585-4
    BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

    METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

    RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P 

  7. Teoh BT, Sam SS, Tan KK, Johari J, Shu MH, Danlami MB, et al.
    BMC Evol. Biol., 2013;13:213.
    PMID: 24073945 DOI: 10.1186/1471-2148-13-213
    Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control.
  8. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links