Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Lim WY, Hss AS, Ng LM, John Jasudass SR, Sararaks S, Vengadasalam P, et al.
    BMC Fam Pract, 2018 07 19;19(1):120.
    PMID: 30025534 DOI: 10.1186/s12875-018-0808-4
    BACKGROUND: To evaluate the effectiveness of a structured prescription review and prescriber feedback program in reducing prescribing errors in government primary care clinics within an administrative region in Malaysia.

    METHODS: This was a three group, pragmatic, cluster randomised trial. In phase 1, we randomised 51 clinics to a full intervention group (prescription review and league tables plus authorised feedback letter), a partial intervention group (prescription review and league tables), and a control group (prescription review only). Prescribers in these clinics were the target of our intervention. Prescription reviews were performed by pharmacists; 20 handwritten prescriptions per prescriber were consecutively screened on a random day each month, and errors identified were recorded in a standardised data collection form. Prescribing performance feedback was conducted at the completion of each prescription review cycle. League tables benchmark prescribing errors across clinics and individual prescribers, while the authorised feedback letter detailed prescribing performance based on a rating scale. In phase 2, all clinics received the full intervention. Pharmacists were trained on data collection, and all data were audited by researchers as an implementation fidelity strategy. The primary outcome, percentage of prescriptions with at least one error, was displayed in p-charts to enable group comparison.

    RESULTS: A total of 32,200 prescriptions were reviewed. In the full intervention group, error reduction occurred gradually and was sustained throughout the 8-month study period. The process mean error rate of 40.7% (95% CI 27.4, 29.5%) in phase 1 reduced to 28.4% (95% CI 27.4, 29.5%) in phase 2. In the partial intervention group, error reduction was not well sustained and showed a seasonal pattern with larger process variability. The phase 1 error rate averaging 57.9% (95% CI 56.5, 59.3%) reduced to 44.8% (95% CI 43.3, 46.4%) in phase 2. There was no evidence of improvement in the control group, with phase 1 and phase 2 error rates averaging 41.1% (95% CI 39.6, 42.6%) and 39.3% (95% CI 37.8, 40.9%) respectively.

    CONCLUSIONS: The rate of prescribing errors in primary care settings is high, and routine prescriber feedback comprising league tables and a feedback letter can effectively reduce prescribing errors.

    TRIAL REGISTRATION: National Medical Research Register: NMRR-12-108-11,289 (5th March 2012).
  2. Nealon J, Lim WY, Moureau A, Linus Lojikip S, Junus S, Kumar S, et al.
    Vaccine, 2019 09 16;37(39):5891-5898.
    PMID: 31445770 DOI: 10.1016/j.vaccine.2019.07.083
    BACKGROUND: The world's first dengue vaccine [Dengvaxia; Sanofi Pasteur] was licensed in 2015 and others are in development. Real-world evaluations of dengue vaccines will therefore soon be needed. We assessed feasibility of case control (CC) and test-negative (TN) design studies for dengue vaccine effectiveness by measuring associations between socio-demographic risk factors, and hospitalized dengue outcomes, in Malaysia.

    METHODS: Following ethical approval, we conducted hospital-based dengue surveillance for one year in three referral hospitals. Suspected cases aged 9-25 years underwent dengue virological confirmation by RT-PCR and/or NS1 Ag ELISA at a central laboratory. Two age- and geography-matched hospitalized non-dengue case-controls were recruited for a traditional CC study. Suspected cases testing negative were test-negative controls. Socio-demographic, risk factor and routine laboratory data were collected. Logistic regression models were used to estimate associations between confirmed dengue and risk factors.

    RESULTS: We recruited 327 subjects; 155 were suspected of dengue. The planned sample size was not met. 124 (80%) of suspected cases were dengue-confirmed; seven were assessed as severe. Three had missing RT-PCR results; the study recruited 28 test-negative controls. Only 172 matched controls could be recruited; 90 cases were matched with ≥1 controls. Characteristics of cases and controls were mostly similar. By CC design, two variables were significant risk factors for hospitalized dengue: recent household dengue contact (OR: 54, 95% CI: 7.3-397) and recent neighbourhood insecticidal fogging (OR: 2.1; 95% CI: 1.3-3.6). In the TN design, no risk factors were identified. In comparison with gold-standard diagnostics, routine tests performed poorly.

    CONCLUSIONS: The CC design may be more appropriate than the TN design for hospitalized dengue vaccine effectiveness studies. Selection bias in case control selection could be minimized by protocol changes more easily than increasing TN design control numbers, because early-stage dengue diagnosis in endemic countries is highly specific. MREC study approval: (39)KKM/NIHSEC/P16-1334.

  3. Junus S, Chew CC, Sugunan P, Meor-Aziz NF, Zainal NA, Hassan HM, et al.
    BMC Public Health, 2021 10 15;21(1):1860.
    PMID: 34654405 DOI: 10.1186/s12889-021-11825-2
    BACKGROUND: Secondhand smoke (SHS) exposure can affect physical development in children. An understanding of parental risk perception of SHS could guide efforts to develop measures for prevention of SHS exposure among children. This study aimed to assess parental risk perceptions of SHS and action taken by parents to minimise SHS exposure in their children.

    METHODS: This cross-sectional nationwide study conducted in 2018 recruited convenience sample of 289 parents with children up to age 12 at public areas. Parents were asked to rate the risk level from 1 (no risk) to 5 (extremely high risk) by looking at photographs of an adult smoking in the presence of a child in 8 different situations. The implementation of smoking restriction rules was assessed. Mean scores were calculated with higher scores representing higher risk perception of SHS to child's health. Linear regression analysis was used to determine factors associated with the level of parental risk perception of SHS exposure to their children's health.

    RESULTS: A total of 246 parents responded. Their mean age was 35 years (SD 6.4). The majority were mothers (75.6%), Malays (72.0%) and had tertiary education level (82.5%), and non-smoker (87.1%). The mean age of respondents' youngest child was 3 years (SD 3.1). The risk perception level was high [mean scores: 4.11 (SD: 0.82)]. Most parents implemented household (65.0%) and car (68.3%) smoking restriction rules. Lower levels of risk perception were observed among participants who were current smokers (p 

  4. Shafie AA, Yeo HY, Coudeville L, Steinberg L, Gill BS, Jahis R, et al.
    Pharmacoeconomics, 2017 May;35(5):575-589.
    PMID: 28205150 DOI: 10.1007/s40273-017-0487-3
    BACKGROUND: Dengue disease poses a great economic burden in Malaysia.

    METHODS: This study evaluated the cost effectiveness and impact of dengue vaccination in Malaysia from both provider and societal perspectives using a dynamic transmission mathematical model. The model incorporated sensitivity analyses, Malaysia-specific data, evidence from recent phase III studies and pooled efficacy and long-term safety data to refine the estimates from previous published studies. Unit costs were valued in $US, year 2013 values.

    RESULTS: Six vaccination programmes employing a three-dose schedule were identified as the most likely programmes to be implemented. In all programmes, vaccination produced positive benefits expressed as reductions in dengue cases, dengue-related deaths, life-years lost, disability-adjusted life-years and dengue treatment costs. Instead of incremental cost-effectiveness ratios (ICERs), we evaluated the cost effectiveness of the programmes by calculating the threshold prices for a highly cost-effective strategy [ICER <1 × gross domestic product (GDP) per capita] and a cost-effective strategy (ICER between 1 and 3 × GDP per capita). We found that vaccination may be cost effective up to a price of $US32.39 for programme 6 (highly cost effective up to $US14.15) and up to a price of $US100.59 for programme 1 (highly cost effective up to $US47.96) from the provider perspective. The cost-effectiveness analysis is sensitive to under-reporting, vaccine protection duration and model time horizon.

    CONCLUSION: Routine vaccination for a population aged 13 years with a catch-up cohort aged 14-30 years in targeted hotspot areas appears to be the best-value strategy among those investigated. Dengue vaccination is a potentially good investment if the purchaser can negotiate a price at or below the cost-effective threshold price.

  5. He S, Lunnen JC, Puvanachandra P, Amar-Singh, Zia N, Hyder AA
    Am J Public Health, 2014 Mar;104(3):e79-84.
    PMID: 24432924 DOI: 10.2105/AJPH.2013.301607
    We aimed to analyze the epidemiology of childhood unintentional injuries presenting to hospitals in 5 select sites in low- and middle-income countries (LMICs) (Bangladesh, Colombia, Egypt, Malaysia, and Pakistan).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links