Molecular and morphological analyses indicate that a new upland species of the Cyrtodactylus sworderi complex, C. tebuensis sp. nov. from Gunung Tebu, Terengganu, Malaysia is most closely related to C. sworderi and together they form the sister lineage to C. quadrivirgatus. Cyrtodactylus tebuensis sp. nov. is differentiated from all other species of Sundaland Cyrtodactylus on the basis of having the unique combination of large, conical, keeled body tubercles; tubercles present on top of head, occiput, nape, and limbs, and extending posteriorly beyond base of tail; 43-51 ventral scales; no transversely enlarged, median subcaudal scales; proximal, subdigital lamellae transversely expanded; 17-21 subdigital lamellae on fourth toe; an abrupt transition between posterior and ventral femoral scales; enlarged femoral scales; no femoral or precloacal pores; no precloacal groove; body bearing four wide, bold, dark brown stripes (lateral stripe on each flank and a pair of paravertebral stripes); and a pairwise sequence divergence of 13.0% from its closest relative C. sworderi based on the mitochondrial gene ND2. Cyrtodactylus tebuensis sp. nov. is the first endemic upland species of gekkonid from northeastern Peninsular Malaysia and underscores the necessity for additional field work in all upland systems.
A review of the taxonomic status of the Asian Slug Snake, Asthenodipsas vertebralis (Boulenger, 1900) based on an integrative taxonomic approach using molecular, morphological, color pattern, and ecological data indicate it is composed of three well supported monophyletic lineages: (1) Pulau Tioman and Fraser's Hill, Pahang and Bukit Larut, Perak; Peninsular Malaysia; (2) its sister lineage from Northern Sumatra; and (3) the remaining basal lineage from Peninsular Malaysia. Furthermore, we consider the high sequence divergence (6.3%-10.2%) between these lineages (especially in areas of sympatry) and discrete differences in their morphology, color pattern, and microhabitat preference as evidence they are not conspecific. As such, we resurrect the name A. tropidonotus (Lidth de Jeude, 1923) for the Sumatra populations, restrict the name A. vertebralis to the populations from Pulau Tioman, Genting Highlands, Fraser's Hill, Gunung Benom, and Bukit Larut that contain terrestrial, banded adults; and consider A. lasgalenensis sp. nov. to be restricted to the populations from Fraser's Hill, Cameron Highlands, and Bukit Larut that contain arboreal, unbanded adults.
A new, diminutive species of Rock Gecko Cnemaspis mahsuriae sp. nov. of the affinis group, is described from Gunung Raya on Pulau Langkawi, Kedah, Peninsular Malaysia and is differentiated from all other species in the affinis group by having a unique combination of characters including a maximum SVL of 36.6 mm; keeled subtibials and ventrals; 21-24 paravertebral tubercles; no tubercles in the lateral caudal furrows; caudal tubercles not encircling tail; no precloacal pores; 23-26 subdigital lamellae on the fourth toe; no white ocelli in the shoulder region; no yellow postscapular band; and faint yellow bars on the flanks. Cnemaspis mahsuriae sp. nov. is a forest-dwelling species living in close sympatry or paraptry with the insular endemic C. roticanai Grismer & Chan. The Langkawi Archipelago harbors a unique mix of Malaysian and Indochinese taxa and the frequency of new discoveries from this group of islands is increasing.
Most new cryptic species are described using conventional tree- and distance-based species delimitation methods (SDMs), which rely on phylogenetic arrangements and measures of genetic divergence. However, although numerous factors such as population structure and gene flow are known to confound phylogenetic inference and species delimitation, the influence of these processes is not frequently evaluated. Using large numbers of exons, introns, and ultraconserved elements obtained using the FrogCap sequence-capture protocol, we compared conventional SDMs with more robust genomic analyses that assess population structure and gene flow to characterize species boundaries in a Southeast Asian frog complex (Pulchrana picturata). Our results showed that gene flow and introgression can produce phylogenetic patterns and levels of divergence that resemble distinct species (up to 10% divergence in mitochondrial DNA). Hybrid populations were inferred as independent (singleton) clades that were highly divergent from adjacent populations (7%-10%) and unusually similar (<3%) to allopatric populations. Such anomalous patterns are not uncommon in Southeast Asian amphibians, which brings into question whether the high levels of cryptic diversity observed in other amphibian groups reflect distinct cryptic species-or, instead, highly admixed and structured metapopulation lineages. Our results also provide an alternative explanation to the conundrum of divergent (sometimes nonsister) sympatric lineages-a pattern that has been celebrated as indicative of true cryptic speciation. Based on these findings, we recommend that species delimitation of continuously distributed "cryptic" groups should not rely solely on conventional SDMs, but should necessarily examine population structure and gene flow to avoid taxonomic inflation.
A survey was carried out at Gunung Panti Forest Reserve, Johor from 3-7 August 2006, 2-5 June 2008, and 28-31 July 2008 to inventory the herpetofauna therein. An updated checklist for the area which incorporates findings from previous studies is provided. In total, 37 species of frogs, 1 turtle, 27 lizards, and 11 snakes have been recorded from Gunung Panti Forest Reserve, Johor.
A herpetological survey was conducted at Pulau Besar, Melaka from 10 to 12 June 2008, resulting in the discovery of five species of amphibians, nine species of lizards (including one new species of the gekkonid Cyrtodactylus) and one snake species. This report constitutes the first checklist of the herpetofauna of Pulau Besar and the Water Islands Archipelago.
A new species of Bent-toed Gecko, Cyrtodactylus gunungsenyumensis sp. nov. of the sworderi complex, is described from Hutan Lipur Gunung Senyum, Pahang, Peninsular Malaysia and is differentiated from all other species in the sworderi complex by having a unique combination of characters including a maximum SVL of 74.7 mm; low, rounded, weakly keeled, body tubercles; 34-40 paravertebral tubercles; weak ventrolateral body fold lacking tubercles; 38-41 ventral scales; an abrupt transition between the posterior and ventral femoral scales; 20-23 subdigital lamellae on the fourth toe; enlarged femoral scales; no femoral or precloacal pores; no precloacal groove; wide caudal bands; and an evenly banded dorsal pattern. Cyrtodactylus gunungsenyumensis sp. nov. is a scansorial, karst forest-adapted specialist endemic to the karst ecosystem surrounding Gunung Senyum and occurs on the vertical walls of the limestone towers as well as the branches, trunks, and leaves of the vegetation in the associated karst forest. Cyrtodactylus gunungsenyumensis sp. nov. is the seventh species of karst forest-adapted Cyrtodactylus and the sixteenth endemic species of karst ecosystem reptile discovered in Peninsular Malaysia in the last seven years from only 12 different karst forests. This is a clear indication that many species remain to be discovered in the approximately 558 isolated karst ecosystems in Peninsular Malaysia not yet surveyed. These data continue to underscore the importance of karst ecosystems as reservoirs of biodiversity and microendemism and that they constitute an important component of Peninsular Malaysia's natural heritage and should be protected from the quarrying interests of foreign industrial companies.
We collected two specimens of an undescribed species of Lygosoma from pitfall traps in an urban rainforest in Kuching and from the base of a forested hill in western Sarawak, East Malaysia. The new species is diagnosable from all south-east Asian congeners by morphological characters, and most closely resembles Lygosoma herberti from the Thai-Malay Peninsula. The new species shows substantial molecular divergence from its closest relatives in two protein-coding genes, one mitochondrial (ND1) and one nuclear (R35) that we sequenced for several south-east Asian congeners. We describe the new species on the basis of this distinct morphology and genetic divergence. It is the third species of Lygosoma known from Borneo, and highlights the continuing rise in lizard species diversity on the island. In addition, the discovery of this species from a small urban rainforest underscores the importance of preserving intact rainforest areas of any size in maintaining species diversity.
The taxonomic position of the rare Selangor Mud Snake (Raclitia indica) Gray to other species of homalopsids has remained uncertain due to the scarcity of specimens in collections and the lack of genetic material for comparison. Here we report the first molecular phylogenetic examination of this species based on recently acquired material. The study recovered R. indica nested within the clade of advanced, fanged homalopsids and the sister species to Erpeton tentaculatus Lácèpede. We also present notes on variation observed in the new specimens as well as range extensions for the species.
A new species of limestone karst-adapted gecko of the Cyrtodactylus pulchellus complex, C. dayangbuntingensis sp. nov., is described from Dayang Bunting Island of the Langkawi Archipelago off the northwest coast of Peninsular Malaysia. It is the third species of the group to be described from the archipelago after C. langkawiensis and C. macrotuberculatus. The new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. This discovery underscores the need for continued surveys of the many islands in the archipelago to properly ascertain its true herpetological diversity.
A new species of Ansonia is described from the Shan Plateau of Myanmar based on an integrative taxonomic analysis that differentiates it from all other congeners. Molecular phylogenetic analyses based on the mitochondrial genes 12S and 16S rRNA and tRNA-val recover A. kyaiktiyoensis sp. nov. as the sister species to A. inthanon from Thailand but differs from it and other congeners by at least a 5.0% sequence divergence. It is further differentiated by the following combination of morphological characters: (1) maximum SVL 24 mm in males and females; (2) first finger shorter than second; (3) absence of interorbital and tarsal ridges; (4) presence of light-coloured interscapular spot; (5) presence of yellow rictal tubercle; (6) absence of wide, light-coloured patch below eye; (7) presence of large, discrete, bright-yellow submandibular spots along the underside of lower jaw; (8) iris yellow-gold; (9) presence of markings on the snout consisting of streaks below the eye to the lip, and on the canthus rostralis to the nostril; (10) dorsum grey-brown with orange-beige spots, a dark-brown X-shaped marking on the back surrounding the interscapular spot, and dark-coloured markings on rump; (11) fore- and hind limbs with orange-beige cross-bars; and (12) venter light-gray with yellow spotting, especially near flanks and underside of hind limbs. Ansonia kyaiktiyoensis sp. nov. is the westernmost known record for the genus and the only species west of the Salween Basin. Its discovery echoes the increasing number of herpetological discoveries being made in upland regions fringing the Ayeyarwady and Salween Basins.
A review of the taxonomic status of the Smooth Slug Snake (Asthenodipsas laevis) in Borneo resulted in the discovery of two previously unrecognised species from the highlands of Sabah, East Malaysia. Asthenodipsas jamilinaisi sp. nov. and A. stuebingi sp. nov. are presumed to be closely related to A. laevis based on similarities in pholidosis and patterning but can be separated from A. laevis by their dorsal scale rows of 15/15/15 vs 15/15/13 and the presence of a sharp vertebral keel. Asthenodipsas jamilinaisi sp. nov. can be further differentiated from A. stuebingi sp. nov. by the greatly enlarged size of the vertebral scales, higher number of ventrals in males (173-175 vs 165), higher number of subcaudals (53 vs 35-47) and colour pattern (dark overall with indistinct bands vs lighter head and body with clear, distinct bands and a dark neck patch). The discovery highlights the need for more careful examination of much of the herpetofauna of Borneo that still remains underestimated and understudied. There is an urgent need for continued surveys into its diversity and the collection of genetic material for integrated taxonomic revisions.
An integrative taxonomic analysis of Subdoluseps herberti from southern Thailand and Peninsular Malaysia and S. samajaya from Sarawak, East Malaysia (Borneo) recovers the former as paraphyletic with respect to the latter. The analyses recover the three southernmost populations of S. herberti in Peninsular Malaysia as conspecific and the sister lineage of S. samajaya, whereas S. herberti from Thailand and northern Peninsular Malaysia constitute the sister species to S. samajaya plus the southern three Peninsular Malaysian populations. As such, the southern populations are described herein as S. malayana sp. nov. and all three species are referred to as the S. herberti group. Clade boundaries and breaks within this group on the Thai-Malay Peninsula occurring at the Isthmus of Kra, across the Kangar-Pattani line, and between the Thai-Malay Peninsula and Borneo are consistent with phylogeographic patterns of other Sundaic taxa. The discovery of S. malayana sp. nov. continues to underscore the fact that, despite the well-studied nature of the lizard fauna of Peninsular Malaysia, much of it still remains unrealized and for conservation efforts to move forward, field research followed by expeditiously revised taxonomies must continue.
A survey of a limestone forest at Gunung Baling, Kedah, West Malaysia lead to the discovery of an undescribed species of Bent-toed Gecko from the Cyrtodactylus pulchellus complex. Cyrtodactylus evanquahi sp. nov. can be distinguished from all other species in the C. pulchellus complex by a suite of morphological and color pattern characteristics: prominent tuberculation, higher number of dark body bands, and a smaller maximum SVL. It is further differentiated from all other species as follows; no tubercles on the ventral surface of the forelimbs, gular region, or in the ventrolateral folds; 31-34 paravetebral dorsal tubercles; 18-23 longitudinal rows of tubercles; 29-33 ventral scales; 22-23 subdigital lamellae on the fourth toe; 32-36 femoroprecloacal pores; a shallow precloacal groove in males; body bands and nuchal loop edged with a thin white line bearing tubercles; no scattered white spots on the dorsum; six or seven dark body bands much thinner than interspaces; 9-11 dark caudal bands on original tail; bands on the original tail separated by immaculate white caudal bands. It is further differentiated by an uncorrected pairwise genetic divergence of 6.50-15.67% from all other congeners in the C. pulchellus complex. It is most closely related to C. pulchellus from Penang Island ∼76 km to the southwest. In addition to the new samples from Gunung Baling, we added four samples of C. bintangrendah from the new locality of Belukar Semang, Perak. The discovery of yet another new species of the C. pulchellus complex from a limestone habitat continues to underscore the high degree of endemism and the importance of these unique habitats for biodiversity, and the continued need for their conservation.
A reappraisal of the taxonomic status of the Dark-necked Slug Snake (Asthenodipsas malaccana Peters, 1864) across its range revealed that populations from Borneo are not conspecific with true A. malaccana from the Thai-Malay Peninsula and Sumatra, and is therefore described herein as new. Asthenodipsas borneensis sp. nov. can be distinguished from A. malaccana and other congeners by the absence of a preocular and suboculars, seven or eight supralabials with 3rd and 4th in contact with orbit, 4-7 infralabials with 2nd or 3rd pair in contact, two pairs of posterior inframaxillaries, 15/15/15 rows of dorsal scales, presence of sharp vertebral keel, divided subcaudals, maximum recorded SVL=441 mm, 166-179 ventrals, 35-48 subcaudals, head white to greyish brown and dorsum beige to orange-brown with a conspicuous dark-brown or black patch on the neck followed by multiple, narrow, vertical, dark bands along the rest of the body and tail. This discovery adds to a growing number of new slug snake species recently described from Southeast Asia and highlights the underestimated diversity in this family, especially in Borneo. Taxonomic revisions of the reptiles and amphibians of Borneo are still needed before the true diversity of the island and the relationships of the various taxa can be fully understood.
Accurately delimiting species boundaries is a nontrivial undertaking that can have significant effects on downstream inferences. We compared the efficacy of commonly used species delimitation methods (SDMs) and a population genomics approach based on genomewide single-nucleotide polymorphisms (SNPs) to assess lineage separation in the Malaysian Torrent Frog Complex currently recognized as a single species (Amolops larutensis). First, we used morphological, mitochondrial DNA and genomewide SNPs to identify putative species boundaries by implementing noncoalescent and coalescent-based SDMs (mPTP, iBPP, BFD*). We then tested the validity of putative boundaries by estimating spatiotemporal gene flow (fastsimcoal2, ABBA-BABA) to assess the extent of genetic isolation among putative species. Our results show that the A. larutensis complex runs the gamut of the speciation continuum from highly divergent, genetically isolated lineages (mean Fst = 0.9) to differentiating populations involving recent gene flow (mean Fst = 0.05; Nm > 5). As expected, SDMs were effective at delimiting divergent lineages in the absence of gene flow but overestimated species in the presence of marked population structure and gene flow. However, using a population genomics approach and the concept of species as separately evolving metapopulation lineages as the only necessary property of a species, we were able to objectively elucidate cryptic species boundaries in the presence of past and present gene flow. This study does not discount the utility of SDMs but highlights the danger of violating model assumptions and the importance of carefully considering methods that appropriately fit the diversification history of a particular system.
An integrative taxonomic analysis used to identify a new population of Bronchocela from Phuket Island, Thailand indicates it is conspecific with B. rayaensis from the Langkawi Archipelago of northwestern Peninsular Malaysia. An additional specimen photographed from Khura Buri District, Phang-nga Province is also considered to be B. rayaensis and represents a northern range extension of 295 km from the Langkawi Archipelago.
Phylogenetic analyses based on the mitochondrial gene ND2 and its flanking tRNAs indicate the diminutive upland and insular species Sphenomorphus bukitensis, S. butleri, S. langkawiensis, S. perhentianensis, and S. temengorensis form a monophyletic group that is phylogenetically embedded within the Southeast Asian genus Tytthoscincus. The analyses also indicate that a new swamp-dwelling skink from the Bukit Panchor State Park, Pulau Pinang, Peninsular Malaysia is the sister species to the swamp-dwelling species S. sibuensis from Pulau Sibu, Johor and Singapore and that these two are also embedded in the genus Tytthoscincus. By transferring the two Peninsular Malaysian clades of Sphenomorphus into the genus Tytthoscincus, the monophyly of the latter is maintained. The new species T. panchorensis sp. nov. can be distinguished from all other species of Tytthoscincus by having a unique combination of morphological and color pattern characteristics.
An integrative taxonomic analysis based on the mitochondrial gene ND2 and its flanking tRNAs, morphology, and color pattern indicates that a newly discovered gecko described herein as Hemiphyllodactylus cicak sp. nov. from Penang Hill on the Island of Penang, Peninsular Malaysia is a member of the H. harterti group. Hemiphyllodactylus cicak sp. nov. is most closely related to the clade composed of the sister species H. harterti from Bukit Larut, Perak in the Bintang Mountain Range and H. bintik from Gunung Tebu, Terengganu from the Timur Mountain Range. These three allopatric species form a monophyletic group that extends approximately 270 km across three isolated mountain ranges in northern Peninsular Malaysia. The molecular analysis also indicates that H. titiwangsaensis from the Titiwangsa Mountain Range is composed of three genetically distinct allopatric populations. The southern two populations from Fraser's Hill and Genting Highlands, Pahang have an uncorrected pairwise sequence divergence of 3.5% whereas these two populations have 12.4 and 12.8 % sequence divergences, respectively, from the northern population at Cameron Highlands, Pahang. Although the high sequence divergence clearly distinguishes the southern two populations from the former as a different species, all three populations are morphologically indistinguishable, leading to the hypothesis of a true, cryptic speciation event.
The gekkonid genus Cyrtodactylus is the third largest vertebrate genus on the planet with well over 300 species that range across at least eight biogeographic regions from South Asia to Melanesia. The ecological and morphological plasticity within the genus, has contributed to its ability to disperse across ephemeral seaways, river systems, basins, land bridges, and mountain ranges-followed by in situ diversification within specific geographic areas. Ancestral ranges were reconstructed on a mitochondrial phylogeny with 346 described and undescribed species from which it was inferred that Cyrtodactylus evolved in a proto-Himalaya region during the early Eocene. From there, it dispersed to what is currently Indoburma and Indochina during the mid-Eocene-the latter becoming the first major center of origin for the remainder of the genus that seeded dispersals to the Indian subcontinent, Papua, and Sundaland. Sundaland became a second major center of radiation during the Oligocene and gave rise to a large number of species that radiated further within Sundaland and dispersed to Wallacea, the Philippines, and back to Indochina. One Papuan lineage dispersed west to recolonize and radiate in Sundaland. Currently, Indochina and Sundaland still harbor the vast majority of species of Cyrtodactylus.