Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Levin LA, Wei CL, Dunn DC, Amon DJ, Ashford OS, Cheung WWL, et al.
    Glob Chang Biol, 2020 09;26(9):4664-4678.
    PMID: 32531093 DOI: 10.1111/gcb.15223
    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
  2. Abdullah NA, Asri LN, Husin SM, Shukor AM, Darbis NDA, Ismail K, et al.
    Environ Monit Assess, 2021 Sep 07;193(10):634.
    PMID: 34491451 DOI: 10.1007/s10661-021-09426-y
    We studied the water quality of the riparian firefly sanctuary of Sungai Rembau, or Rembau River, in Negeri Sembilan, Malaysia, from January 2018 to November 2018 to determine the possible influence of the physico-chemical characteristics of the water on the firefly populations living within the sanctuary. We set up a total of five water quality sampling stations and 10 firefly sampling stations along the river. Dissolved oxygen (DO), temperature, pH and electrical conductivity (EC) were measured in situ, while chemical oxygen demand (COD), total suspended solids (TSS), biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N) were analysed in the laboratory. Firefly samples were collected using a sweep net at both day and night for 1 min. Sungai Rembau was categorized as Class II on the Malaysian water quality index (WQI), which indicates slight pollution. Except for EC and DO, the water quality parameter values were not significantly different (p > 0.05) between the sampling stations. A total of 529 firefly individuals consisting of Pteroptyx tener (n = 525, 99.24%), P. malaccae (n = 3, 0.57%) and P. asymmetria (n = 1, 0.19%) were collected. There was significant correlation between firefly abundance and BOD (r =  - 0.198, p 
  3. Amin L, Hashim H, Mahadi Z, Ibrahim M, Ismail K
    Biotechnol Biofuels, 2017;10:219.
    PMID: 28932261 DOI: 10.1186/s13068-017-0908-8
    BACKGROUND: Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment.

    RESULTS: The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits (β = 0.80, p 

  4. Idris SS, Rahman NA, Ismail K
    Bioresour Technol, 2012 Nov;123:581-91.
    PMID: 22944493 DOI: 10.1016/j.biortech.2012.07.065
    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.
  5. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ
    Bioresour Technol, 2010 Jun;101(12):4584-92.
    PMID: 20153633 DOI: 10.1016/j.biortech.2010.01.059
    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends.
  6. Najafpour G, Younesi H, Syahidah Ku Ismail K
    Bioresour Technol, 2004 May;92(3):251-60.
    PMID: 14766158
    Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.
  7. Sobri NHM, Ismail IZ, Hassan F, Papachristou Nadal I, Forbes A, Ching SM, et al.
    BMJ Open, 2021 08 26;11(8):e044878.
    PMID: 34446477 DOI: 10.1136/bmjopen-2020-044878
    INTRODUCTION: Women who develop gestational diabetes mellitus (GDM) have an increased risk of developing type 2 diabetes, and to reduce this risk the women have to adopt healthy behaviour changes. Although previous studies have explored the challenges and facilitators to initiate behaviour change among women with GDM, there is limited data from Malaysian women. Thus, this study will explore the factors affecting the uptake of healthy behaviour changes and the use of digital technology among women and their healthcare providers (HCPs) to support healthy behaviour changes in women with GDM.

    METHODS AND ANALYSIS: The study will be modelled according to the Capability, Opportunity, Motivation and Behaviour and Behaviour Change Wheel techniques, and use the DoTTI framework to identify needs, solutions and testing of a preliminary mobile app, respectively. In phase 1 (design and development), a focus group discussion (FGDs) of 5-8 individuals will be conducted with an estimated 60 women with GDM and 40 HCPs (doctors, dietitians and nurses). Synthesised data from the FGDs will then be combined with content from an expert committee to inform the development of the mobile app. In phase 2 (testing of early iterations), a preview of the mobile app will undergo alpha testing among the team members and the app developers, and beta testing among 30 women with GDM or with a history of GDM, and 15 HCPs using semi-structured interviews. The outcome will enable us to optimise an intervention using the mobile app as a diabetes prevention intervention which will then be evaluated in a randomised controlled trial.

    ETHICS AND DISSEMINATION: The project has been approved by the Malaysia Research Ethics Committee. Informed consent will be obtained from all participants. Outcomes will be presented at both local and international conferences and submitted for publications in peer-reviewed journals.

  8. Amin L, Hashim H, Mahadi Z, Ismail K
    BMC Med Res Methodol, 2018 12 05;18(1):163.
    PMID: 30518344 DOI: 10.1186/s12874-018-0619-2
    BACKGROUND: The demand in biobanking for the collection and maintenance of biological specimens and personal data from civilians to improve the prevention, diagnosis and treatment of diseases has increased notably. Despite the advancement, certain issues, specifically those related to privacy and data protection, have been critically discussed. The purposes of this study are to assess the willingness of stakeholders to participate in biobanking and to determine its predictors.

    METHODS: A survey of 469 respondents from various stakeholder groups in the Klang Valley region of Malaysia was carried out. Based on previous research, a multi-dimensional instrument measuring willingness to participate in biobanking, and its predictors, was constructed and validated. A single step Structural Equation Modelling was performed to analyse the measurements and structural model using the International Business Machines Corporation Software Package for Social Sciences, Analysis of Moment Structures (IBM SPSS Amos) version 20 with a maximum likelihood function.

    RESULTS: Malaysian stakeholders in the Klang Valley were found to be cautious of biobanks. Although they perceived the biobanks as moderately beneficial (mean score of 4.65) and were moderately willing to participate in biobanking (mean score of 4.10), they professed moderate concern about data and specimen protection issues (mean score of 4.33). Willingness to participate in biobanking was predominantly determined by four direct predictors: specific application-linked perceptions of their benefits (β = 0.35, p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links