Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Mohamad S, Liew HJ, Zainuddin RA, Rahmah S, Waiho K, Ghaffar MA, et al.
    J Fish Biol, 2021 Jul;99(1):206-218.
    PMID: 33629400 DOI: 10.1111/jfb.14712
    Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.
  2. Razali RS, Rahmah S, Shirly-Lim YL, Ghaffar MA, Mazelan S, Jalilah M, et al.
    Sci Rep, 2024 Feb 05;14(1):2903.
    PMID: 38316820 DOI: 10.1038/s41598-024-52864-0
    This study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I-RAS), tilapia cultured in open water cage (Treatment II-Cage) and tilapia transferred from cage and cultured in RAS (Treatment III-Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.
  3. Mohamad S, Rahmah S, Zainuddin RA, A Thallib Y, Razali RS, Jalilah M, et al.
    Heliyon, 2024 Feb 29;10(4):e25559.
    PMID: 38404778 DOI: 10.1016/j.heliyon.2024.e25559
    Current water warming and freshwater acidification undoubtedly affect the life of aquatic animals especially ammonotelic teleost by altering their physiological responses. The effect of temperature (28 °C vs 32 °C) and pH (7 vs. 5) on the metabolic compromising strategies of Hoven's carp (Leptobarbus hoevenii) was investigated in this study. Fishes were conditioned to (i) 28 °C + pH 7 (N28°C); (ii) 32 °C + pH 7 (N32°C); (iii) 28 °C + pH 5 (L28°C) and (iv) 32 °C + pH 5 (L32°C) for 20 days followed by osmorespiration assay. Results showed that feeding performance of Hoven's carp was significantly depressed when exposed to low pH conditions (L28°C and L32°C). However, by exposed Hoven's carp to L32°C induced high metabolic oxygen intake and ammonia excretion to about 2x-folds higher compared to the control group. As for energy mobilization, Hoven's carp mobilized liver and muscle protein under L28°C condition. Whereas under high temperature in both pH, Hoven's carp had the tendency to reserve energy in both of liver and muscle. The findings of this study revealed that Hoven's carp is sensitive to lower water pH and high temperature, thereby they remodeled their physiological needs to cope with the environmental changes condition.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links