Displaying publications 21 - 32 of 32 in total

Abstract:
Sort:
  1. Silva MS, Lúcio-Oliveira F, Mecawi AS, Almeida LF, Ruginsk SG, Greenwood MP, et al.
    Physiol Rep, 2017 Mar;5(6).
    PMID: 28336818 DOI: 10.14814/phy2.13210
    Excessive sodium (Na+) intake in modern society has been associated with several chronic disorders such as hypertension. Several studies suggest that early life events can program physiological systems and lead to functional changes in adulthood. Therefore, we investigated behavioral and neuroendocrine responses under basal conditions and after 48 h of water deprivation in adult (60-day-old Wistar rats) male, Wistar rats originating from dams were offered only water or 0.15 mol/L NaCl during pregnancy and lactation. Early life salt exposure induced kidney damage, as shown by a higher number of ED-1 positive cells (macrophages/monocytes), increased daily urinary volume and Na+ excretion, blunted basal water intake and plasma oxytocin levels, and increased plasma corticosterone secretion. When challenged with water deprivation, animals exposed to 0.15 mol/L NaCl during early life showed impaired water intake, reduced salt preference ratio, and vasopressin (AVP) secretion. In summary, our data demonstrate that the perinatal exposure to excessive Na+ intake can induce kidney injury in adult offspring and significantly affect the key mechanisms regulating water balance, fluid intake, and AVP release in response to water deprivation. Collectively, these novel results highlight the impact of perinatal programming on the homeostatic mechanisms regulating fluid and electrolyte balance during exposure to an environmental stress (i.e. dehydration) in later life.
  2. Greenwood MP, Greenwood M, Romanova EV, Mecawi AS, Paterson A, Sarenac O, et al.
    Neurobiol Aging, 2018 05;65:178-191.
    PMID: 29494864 DOI: 10.1016/j.neurobiolaging.2018.01.008
    Elderly people exhibit a diminished capacity to cope with osmotic challenges such as dehydration. We have undertaken a detailed molecular analysis of arginine vasopressin (AVP) biosynthetic processes in the supraoptic nucleus (SON) of the hypothalamus and secretory activity in the posterior pituitary of adult (3 months) and aged (18 months) rats, to provide a comprehensive analysis of age-associated changes to the AVP system. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, we identified differences in pituitary peptides, including AVP, in adult and aged rats under both basal and dehydrated states. In the SON, increased Avp gene transcription, coincided with reduced Avp promoter methylation in aged rats. Based on transcriptome data, we have previously characterized a number of novel dehydration-induced regulatory factors involved in the response of the SON to osmotic cues. We found that some of these increase in expression with age, while dehydration-induced expression of these genes in the SON was attenuated in aged rats. In summary, we show that aging alters the rat AVP system at the genome, transcriptome, and peptidome levels. These alterations however did not affect circulating levels of AVP in basal or dehydrated states.
  3. Paes-Leme B, Monteiro LDRN, Gholami K, Hoe SZ, Ferguson AV, Murphy D, et al.
    J Neuroendocrinol, 2023 Nov;35(11):e13334.
    PMID: 37667574 DOI: 10.1111/jne.13334
    In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.
  4. Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Apr 01;308(7):R559-68.
    PMID: 25632023 DOI: 10.1152/ajpregu.00444.2014
    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
  5. Cheah HY, Šarenac O, Arroyo JJ, Vasić M, Lozić M, Glumac S, et al.
    Nanotoxicology, 2017 03;11(2):210-222.
    PMID: 28098511 DOI: 10.1080/17435390.2017.1285071
    Conjugation of Doxorubicin (DOX) to N-(2-hydroxypropyl) methylacrylamide copolymer (HPMA) has significantly reduced the DOX-associated cardiotoxicity. However, the reports on the impact of HPMA-DOX conjugates on the cardiovascular system such as blood pressure (BP) and heart rate (HR) were in restrained animals using tail cuff and/or other methods that lacked the resolution and sensitivity. Herein, we employed radiotelemetric-spectral-echocardiography approach to further understand the in vivo cardiovascular hemodynamics and variability post administration of free DOX and HPMA-DOX. Rats implanted with radio-telemetry device were administered intravenously with DOX (5 mg/kg), HPMA-DOX (5 mg DOX equivalent/kg) and HPMA copolymer and subjected to continuous cardiovascular monitoring and echocardiography for 140 days. We found that DOX-treated rats had ruffled fur, reduced body weight (BW) and a low survival rate. Although BP and HR were normal, spectral analysis indicated that their BP and HR variabilities were reduced. All rats exhibited typical signs of cardiotoxicity at histopathology. In contrast, HPMA-DOX rats gained weight over time and survived. Although BP, HR and related variabilities were unaffected, the left ventricular end diastolic volume (EDV) of these rats, as well as of the HPMA copolymer-treated rats, was found increased at the end of observation period. Additionally, HPMA copolymer caused microscopic injury of the heart tissue. All of these suggest the necessity of caution when employing HPMA as carrier for prolonged drug delivery. The current study also indicates the potential of radiotelemetric-spectral-echocardiography approach for improved preclinical cardiovascular risk assessment of polymer-drug conjugate and other nano-sized-drug constructs.
  6. Alim FZD, Romanova EV, Tay YL, Rahman AYBA, Chan KG, Hong KW, et al.
    PLoS One, 2019;14(6):e0216679.
    PMID: 31211771 DOI: 10.1371/journal.pone.0216679
    The "ship" of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.
  7. Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, et al.
    Biol. Direct, 2017 Sep 08;12(1):21.
    PMID: 28886750 DOI: 10.1186/s13062-017-0191-4
    BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools.

    RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

    CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.

    REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

  8. Konopacka A, Qiu J, Yao ST, Greenwood MP, Greenwood M, Lancaster T, et al.
    J Neurosci, 2015 Apr 01;35(13):5144-55.
    PMID: 25834041 DOI: 10.1523/JNEUROSCI.4121-14.2015
    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.
  9. Akaza H, Hirao Y, Kim CS, Oya M, Ozono S, Ye D, et al.
    Prostate Int, 2016 Sep;4(3):88-96.
    PMID: 27689065 DOI: 10.1016/j.prnil.2016.03.001
    The Asian Prostate Cancer (A-CaP) Study is an Asia-wide initiative that has been developed over the course of 2 years. The A-CaP Study is scheduled to begin in 2016, when each participating country or region will begin registration of newly diagnosed prostate cancer patients and conduct prognosis investigations. From the data gathered, common research themes will be identified, such as comparisons among Asian countries of background factors in newly diagnosed prostate cancer patients. This is the first Asia-wide study of prostate cancer and has developed from single country research efforts in this field, including in Japan and Korea. The inaugural Board Meeting of A-CaP was held on December 11, 2015 at the Research Center for Advanced Science and Technology, The University of Tokyo, attended by representatives of all participating countries and regions, who signed a memorandum of understanding concerning registration for A-CaP. Following the Board Meeting an A-CaP Launch Symposium was held. The symposium was attended by representatives of countries and regions participating in A-CaP, who gave presentations. Presentations and a keynote address were also delivered by representatives of the University of California San Francisco, USA, and the Peter MacCallum Cancer Centre, Australia, who provided insight and experience on similar databases compiled in their respective countries.
  10. Kaiyrzhanov R, Mohammed SEM, Maroofian R, Husain RA, Catania A, Torraco A, et al.
    Am J Hum Genet, 2022 Sep 01;109(9):1692-1712.
    PMID: 36055214 DOI: 10.1016/j.ajhg.2022.07.007
    Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.
  11. Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, et al.
    Genet Med, 2023 Jan;25(1):90-102.
    PMID: 36318270 DOI: 10.1016/j.gim.2022.09.010
    PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants.

    METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.

    RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.

    CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.

  12. Mikropoulos C, Selkirk CGH, Saya S, Bancroft E, Vertosick E, Dadaev T, et al.
    Br J Cancer, 2018 Jan;118(2):266-276.
    PMID: 29301143 DOI: 10.1038/bjc.2017.429
    BACKGROUND: Prostate-specific antigen (PSA) and PSA-velocity (PSAV) have been used to identify men at risk of prostate cancer (PrCa). The IMPACT study is evaluating PSA screening in men with a known genetic predisposition to PrCa due to BRCA1/2 mutations. This analysis evaluates the utility of PSA and PSAV for identifying PrCa and high-grade disease in this cohort.

    METHODS: PSAV was calculated using logistic regression to determine if PSA or PSAV predicted the result of prostate biopsy (PB) in men with elevated PSA values. Cox regression was used to determine whether PSA or PSAV predicted PSA elevation in men with low PSAs. Interaction terms were included in the models to determine whether BRCA status influenced the predictiveness of PSA or PSAV.

    RESULTS: 1634 participants had ⩾3 PSA readings of whom 174 underwent PB and 45 PrCas diagnosed. In men with PSA >3.0 ng ml-l, PSAV was not significantly associated with presence of cancer or high-grade disease. PSAV did not add to PSA for predicting time to an elevated PSA. When comparing BRCA1/2 carriers to non-carriers, we found a significant interaction between BRCA status and last PSA before biopsy (P=0.031) and BRCA2 status and PSAV (P=0.024). However, PSAV was not predictive of biopsy outcome in BRCA2 carriers.

    CONCLUSIONS: PSA is more strongly predictive of PrCa in BRCA carriers than non-carriers. We did not find evidence that PSAV aids decision-making for BRCA carriers over absolute PSA value alone.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links