Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Wang X, Walker A, Revez JA, Ni G, Adams MJ, McIntosh AM, et al.
    Am J Hum Genet, 2023 Jul 06;110(7):1207-1215.
    PMID: 37379836 DOI: 10.1016/j.ajhg.2023.06.006
    In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
  2. Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933133 DOI: 10.3390/polym12092081
    Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
  3. Naomi R, Ratanavaraporn J, Fauzi MB
    Materials (Basel), 2020 Jul 10;13(14).
    PMID: 32664418 DOI: 10.3390/ma13143097
    The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
  4. Naomi R, Ridzuan PM, Bahari H
    Polymers (Basel), 2021 Aug 09;13(16).
    PMID: 34451183 DOI: 10.3390/polym13162642
    Collagen type I (Col-I) is unique due to its high biocompatibility in human tissue. Despite its availability from various sources, Col-I naturally mimics the extracellular matrix (ECM) and generally makes up the larger protein component (90%) in vasculature, skin, tendon bone, and other tissue. The acceptable physicochemical properties of native Col-I further enhance the incorporation of Col-I in various fields, including pharmaceutical, cosmeceutical, regenerative medicine, and clinical. This review aims to discuss Col-I, covering the structure, various sources of availability, native collagen synthesis, current extraction methods, physicochemical characteristics, applications in various fields, and biomarkers. The review is intended to provide specific information on Col-I currently available, going back five years. This is expected to provide a helping hand for researchers who are concerned about any development on collagen-based products particularly for therapeutic fields.
  5. Naomi R, Bt Hj Idrus R, Fauzi MB
    Int J Environ Res Public Health, 2020 Sep 18;17(18).
    PMID: 32961877 DOI: 10.3390/ijerph17186803
    Cellulose is a naturally existing element in the plant's cell wall and in several bacteria. The unique characteristics of bacterial cellulose (BC), such as non-toxicity, biodegradability, hydrophilicity, and biocompatibility, together with the modifiable form of nanocellulose, or the integration with nanoparticles, such as nanosilver (AgNP), all for antibacterial effects, contributes to the extensive usage of BC in wound healing applications. Due to this, BC has gained much demand and attention for therapeutical usage over time, especially in the pharmaceutical industry when compared to plant cellulose (PC). This paper reviews the progress of related research based on in vitro, in vivo, and clinical trials, including the overall information concerning BC and PC production and its mechanisms in wound healing. The physicochemical differences between BC and PC have been clearly summarized in a comparison table. Meanwhile, the latest Food and Drug Administration (FDA) approved BC products in the biomedical field are thoroughly discussed with their applications. The paper concludes on the need for further investigations of BC in the future, in an attempt to make BC an essential wound dressing that has the ability to be marketable in the global marketplace.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links