Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Tripathy A, Pramanik S, Manna A, Bhuyan S, Azrin Shah NF, Radzi Z, et al.
    Sensors (Basel), 2016 Jul 21;16(7).
    PMID: 27455263 DOI: 10.3390/s16071135
    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors.
  2. Lee WY, Lau MN, Soh EX, Yuen SW, Ashari A, Radzi Z
    BMC Oral Health, 2023 Dec 19;23(1):1015.
    PMID: 38115099 DOI: 10.1186/s12903-023-03762-w
    BACKGROUND: Epworth Sleepiness Scale for Children and Adolescents (ESS-CHAD) is a valid and reliable eight-item self-administered questionnaire for the assessment of excessive daytime sleepiness and is commonly used to screen sleep-disordered breathing for children and adolescents. The cross-sectional study aimed to translate and cross-culturally adapt ESS-CHAD into a Malay version of Epworth Sleepiness Scale for Children and Adolescents (MESS-CHAD) for the Malaysian population, and to assess the validity and reliability of MESS-CHAD.

    METHODS: Forward-backward translation method was used to translate and cross-culturally adapt ESS-CHAD. Three linguistic experts and two paediatricians content validated the translated version. Face validity was conducted through audio-recorded semi-structured in-depth interviews with 14 native Malay-speaking children and adolescents followed by thematic analysis. The revised questionnaire was then proofread by a linguistic expert. A total of 40 subjects answered the MESS-CHAD twice, 2 weeks apart, for test-retest reliability and internal consistency. For criterion validity, 148 eligible subjects and their parents answered MESS-CHAD and the Malay version of Sleep-Related Breathing Disorder scale extracted from the Paediatric Sleep Questionnaire (M-PSQ:SRBD) concurrently. Variance Inflation Factor (VIF) and P values of the model's outer weight and outer loading were analysed using SmartPLS software to assess the indicator's multicollinearity and significance for formative construct validity.

    RESULTS: Intraclass Correlation Coefficient (ICC) ranging from 0.798 to 0.932 and Cronbach's alpha ranging from 0.813 to 0.932 confirmed good to excellent test-retest reliability and internal consistency, respectively. Spearman Correlation Coefficient value of 0.789 suggested a very strong positive correlation between MESS-CHAD and M-PSQ:SRBD. VIF ranging from 1.109 to 1.455 indicated no collinearity problem. All questionnaire items in MESS-CHAD were retained as the P value of either outer model weight or outer model loading was significant (P 

  3. Tripathy A, Pramanik S, Manna A, Shasmin HN, Radzi Z, Abu Osman NA
    Sensors (Basel), 2016 Nov 30;16(12).
    PMID: 27916913
    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti₃O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti₃O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%-95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors.
  4. Manssor NA, Radzi Z, Yahya NA, Mohamad Yusof L, Hariri F, Khairuddin NH, et al.
    Skin Pharmacol Physiol, 2016;29(2):55-62.
    PMID: 26836267 DOI: 10.1159/000431328
    Mechanical properties of expanded skin tissue are different from normal skin, which is dependent mainly on the structural and functional integrity of dermal collagen fibrils. In the present study, mechanical properties and surface topography of both expanded and nonexpanded skin collagen fibrils were evaluated. Anisotropic controlled rate self-inflating tissue expanders were placed beneath the skin of sheep's forelimbs. The tissue expanders gradually increased in height and reached equilibrium in 2 weeks. They were left in situ for another 2 weeks before explantation. Expanded and normal skin samples were surgically harvested from the sheep (n = 5). Young's modulus and surface topography of collagen fibrils were measured using an atomic force microscope. A surface topographic scan showed organized hierarchical structural levels: collagen molecules, fibrils and fibers. No significant difference was detected for the D-banding pattern: 63.5 ± 2.6 nm (normal skin) and 63.7 ± 2.7 nm (expanded skin). Fibrils from expanded tissues consisted of loosely packed collagen fibrils and the width of the fibrils was significantly narrower compared to those from normal skin: 153.9 ± 25.3 and 106.7 ± 28.5 nm, respectively. Young's modulus of the collagen fibrils in the expanded and normal skin was not statistically significant: 46.5 ± 19.4 and 35.2 ± 27.0 MPa, respectively. In conclusion, the anisotropic controlled rate self-inflating tissue expander produced a loosely packed collagen network and the fibrils exhibited similar D-banding characteristics as the control group in a sheep model. However, the fibrils from the expanded skin were significantly narrower. The stiffness of the fibrils from the expanded skin was higher but it was not statistically different.
  5. Al-Majhali SH, Khairuddin NH, Abdul Razak IS, Radzi Z, Rahman MT, Sapalo JT, et al.
    J Equine Vet Sci, 2021 04;99:103399.
    PMID: 33781409 DOI: 10.1016/j.jevs.2021.103399
    The use of a self-inflating tissue expander is a technique to stretch cutaneous tissues for potential use in reconstructive skin surgeries. This study investigates the mechanical properties of horse skin stretched by the subcutaneous implantation of anisotropic tissue expanders at the forehead, right shoulder, and dorsomedial part of the cannon region of the right forelimb in six (n = 6) horses. After 14 days of skin expansion, expanded and normal (control) skin samples were harvested and their mechanical properties of elastic modulus (EM), maximum force (MF), maximum stress (MSs) and maximum strain (MSr) were evaluated using uniaxial tension test. The expanded skin from shoulder area has higher EM, MSs, MSr and MF than the normal skin when compared to the forehead and lower forelimb. Statistically, there was a significant (P= .02) mean difference for MSs between the expanded shoulder and lower forelimb skin, but the pairwise comparison of EM, MSr and MF showed no significant difference between the locations. The overall effect of locations on EM and MSs was statistically significant (P < .05), however, there was no overall effect of horse factor, treatment factor (normal and expanded skin) and location interaction on the EM, MSS, MF and MSr. In conclusion, the expanded skin from the frontal head and the distal limb are less elastic (stiffer) compared to that of the expanded skin of the shoulder, thus anatomical location of the skin has some degree of effect on EM and MSs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links