Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Saadatnia G, Ghaffarifar F, Khalilpour A, Amerizadeh A, Rahmah N
    Trop Biomed, 2011 Dec;28(3):606-14.
    PMID: 22433890 MyJurnal
    Toxoplasmosis can cause serious disease in immunocompromised patients and to congenitally infected foetuses. Appropriate laboratory investigations in potential cases of acute Toxoplasma infection are important. Excretory secretory antigen (ESA) is immunogenic during both human and experimental infections, therefore is considered as a good candidate for investigation into new infection markers. In this study, ESA was prepared from in vitro cultures of Toxoplasma gondii to identify T. gondii ESA antigenic component(s) that is/are most reactive with serum samples from probable acute cases of toxoplasmosis. Serum samples were obtained from several categories of individuals with the following Toxoplasma serology: Group I: IgM+ IgG+ (low IgG avidity) or IgM+ IgG- from sera of patients who had clinical query of toxoplasmosis (n=35). Group II: IgM- IgG+ (high IgG avidity) from chronically infected individuals (n=30). Group III: normal/healthy individuals with anti-Toxoplasma IgMIgG- (n=20). Group IV: individuals with other infections who had anti-Toxoplasma IgM- IgG- (n=10). The ESA was subjected to SDS-PAGE, followed by Western blot analysis using the above sera and probed with peroxidase conjugated anti-human IgM and IgA antibodies. The blots were then developed using chemiluminescence substrate. The selected antigenic band was excised from the gel after two dimensional electrophoresis and sent for mass spectrometry analysis using MALDI TOF-TOF. The most promising antigenic band was a 10 kDa protein which showed sensitivity of 80% in both IgM and IgA blots, and specificity of 96.7% with sera from other infections and healthy controls. The two best identifications for the 10 kDa band were ubiquitin (ribosomal protein CEP52 fusion protein) and polyubiquitin.
  2. Romano N, Nor Azah MO, Rahmah N, Lim Y AL, Rohela M
    Trop Biomed, 2010 Dec;27(3):585-94.
    PMID: 21399601 MyJurnal
    Toxocariasis is a zoonotic helminthic infection of humans caused by the dog roundworm (Toxocara canis) or cat roundworm (Toxocara cati). There are two main human syndromes: visceral larva migrans (VLM), which are characterized by symptoms associated with major organs and ocular larva migrans (OLM), in which pathological effects on the host are restricted to the eye and the optic nerve. The present study evaluated the seroprevalence of toxocariasis among the Orang Asli with an IgG4-ELISA using recombinant antigens (rTES-26, rTES-30 and rTES-120) and an IgG-ELISA commercial kit (Cypress Diagnostic, Belgium). A total of 188 serum samples were analyzed using IgG4-ELISA recombinant antigens while 83 were tested using IgG-ELISA. Overall, 9 out of 188 (4.8%) samples were positive with the former assay: rTES-26 (2.7%) and rTES-30 (2.1%); and 63 out of 83 (75.9%) were positive with the IgG-ELISA. In general, the seroprevalence of toxocariasis among males (9.5%) was higher compared to females (1%). Children below 12 years (6.3%) have higher seroprevalence rate compared to adults (1.2%). Out of 59 IgG positive samples, 56 (94.9%) were also positive with soil-transmitted helminth (STH) infections which may indicate high false positivity. None of the IgG4- ELISA positive samples were positive with STH infections. Of 9 positive samples with IgG4-ELISA, 7 were also positive with IgG-ELISA giving the probability of true cases. The present finding indicated that exposure to Toxocara infection is not unusual among Malaysian aborigines, and it affects both sexes and all age groups. As a prevention strategy, more effective public health programmes to promote better understanding on the consequences of toxocariasis among the Orang Asli communities are deemed necessary.
  3. Zeehaida M, Zairi NZ, Rahmah N, Maimunah A, Madihah B
    Trop Biomed, 2011 Apr;28(1):188-93.
    PMID: 21602786
    Transmission of soil-transmitted helminthes infection is by faecal oral route, and is influenced by food preference. Kelantanese love to consume ulam which are raw vegetables and herbs. Some of the herbs grow on grounds with high humidity and are abundant near drainage areas, these are also places with higher likelihood of harbouring viable parasite ova. The aim of this study was to determine the prevalence of soiltransmitted helminthes in vegetables, herbs and fruits found in our local setting. The results by microscopy showed that there was no helminthes ovum or protozoan parasite in the samples. However, Strongyloides stercoralis rhabdatiform larvae were identified in water samples used to wash pegaga, kesum and water spinach, and the number of larvae observed were 152, 9 and 16 respectively. Analysis by real-time PCR confirmed the microscopic observation of this helminth. This study highlighted that vegetables and herbs are likely sources of Strongyloides stercoralis infection in Kota Bharu, Kelantan. Thus vegetable sellers as well as the food handlers are the two important groups who are at high risk of acquiring the infection.
  4. Rahmah N, Nurulhasanah O, Norhayati S, Zulkarnain I, Norizan M
    Trop Biomed, 2010 Apr;27(1):54-9.
    PMID: 20562814 MyJurnal
    Microscopic detection of active phase of lymphatic filariasis is indicated by the presence of microfilaria in whole blood. This method is not sensitive and requires relatively large amount of blood sample. PCR allows very sensitive detection of the parasite DNA using a smaller amount of blood; and the use of dried blood spots facilitates sample transportation. Nevertheless, limited studies have been reported on PCR using dried blood spot for detection of Brugia malayi. In this study, we investigated the effects of concentrating whole blood genomic DNA sample and the amplification methods [conventional PCR (C-PCR) and real-time PCR] on the detection of B. malayi DNA from dried blood spots from a very low endemic area in Malaysia. Both C-PCR and real-time PCR detected 2 out of 18 (11%) samples as positive from non-concentrated genomic DNA preparations. After the DNA samples were pooled and concentrated, both C-PCR and realtime PCR detected B. malayi DNA amplifications in 7 out of 18 (39%) samples. However one sample which showed faint band in C-PCR was detected as highly positive in real-time PCR. In conclusion, both C-PCR and real-time PCR using dried blood spots from a low endemic area demonstrated equal sensitivity for detection of B. malayi DNA.
  5. Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Rahmah N
    Trop Biomed, 2010 Apr;27(1):125-30.
    PMID: 20562822
    In vitro culture of Toxoplasma gondii can provide tachyzoites which are active, viable and with desirable purity. Thus the aim of this study was to optimize the cell culture method for T. gondii propagation to obtain a consistent source of parasites with maximum yield and viability, but minimum host cell contamination for use in production of excretory-secretory antigen. Tachyzoites with seed counts of 1x10(6), 1x10(7) and 1x10(8) harvested from infected mice were added to VERO cells of different degrees of confluence, namely 50%, 85% and 100%, and examined periodically using an inverted microscope. When the maximum release of the tachyzoites was observed from the host cells, the culture supernatant was removed and the tachyzoites harvested. Using a Neubauer chamber, the percentages of viable tachyzoites and host cell contamination were determined using trypan blue stain. Parameters that gave the best yield and purity of viable tachyzoites were found to be as follows: VERO cells at 85% confluence in DMEM medium and inoculum comprising 1x10(7) tachyzoites. After about 3 days post infection, the tachyzoites multiplied 78x, with a yield of ~7.8x10(8) per flask, 99% viability and 3% host cell contamination. This study has successfully optimized the method of propagation of T. gondii tachyzoites in VERO cells which produce parasites with high yield, purity and viability.
  6. Tan ZN, Wong WK, Nik Zairi Z, Abdullah B, Rahmah N, Zeehaida M, et al.
    Trop Biomed, 2010 Apr;27(1):79-88.
    PMID: 20562817 MyJurnal
    Entamoeba histolytica causes about 50 million infections worldwide with a death rate of over 100,000 annually. In endemic developing countries where resources are limited, microscopic examinations based on Wheatley trichrome staining is commonly used for diagnosis of intestinal amoebiasis. Other than being a time-consuming method, it must be performed promptly after stool collection as trophozoites disintegrate rapidly in faeces. The aim of this study was to compare the efficacies of Eosin-Y, Wheatley trichrome and Iodine stains in delineating the diagnostic features of the parasite, and subsequently to determine the suitable microscopy observation period for detection of erythrophagocytic and non-erythrophagocytic trophozoites spiked in semi-solid stool sample. Wheatley trichrome staining technique was performed using the standard method while the other two techniques were performed on the slides by mixing the respective staining solution with the spiked stool sample. One million of axenically cultured non-erythrophagocytic E. histolytica and erythrophagocytic E. histolytica were separately spiked into 2 g of fresh semisolid faeces. Percentage viability of the trophozoites in the spiked stool sample was determined at 30 minute intervals for eight hours using the 0.4% Trypan blue exclusion method. The results showed that Eosin-Y and Wheatley trichrome stained the karyosome and chromatin granules better as compared to Iodine stain. The percentage viability of non-erythrophagocytic trophozoites decreased faster than the erythrophagocytic form in the first 5 hours and both dropped to ~10% in the 6th hour spiked sample. In conclusion, Eosin-Y staining technique was found to be the easiest to perform, most rapid and as accurate as the commonly used Wheatley trichrome technique; Eosin-Y stained slide sealed with DPX could also be kept as a permanent record. A period not exceeding 6 hours after stool collection was found to be the most suitable in order to obtain good microscopy results of viable trophozoites.
  7. Zeehaida M, Wan Nor Amilah WA, Amry AR, Hassan S, Sarimah A, Rahmah N
    Trop Biomed, 2008 Dec;25(3):209-16.
    PMID: 19287359
    Amoebic serodiagnosis at Hospital Universiti Sains Malaysia (HUSM), Kelantan employs an indirect haemagglutination assay (IHA) which detects anti-Entamoeba histolytica antibodies in patients' serum samples. In an amoebiasis endemic area such as Kelantan, interpretation of a positive IHA result can be problematic due to the high background antibody levels. The TechLab E. histolytica II ELISA is a commercial kit for detection of specific Gal/GalNAc lectin antigen in stool samples, and has been reported to be able to detect the antigen in serum samples from patients with amoebic liver abscess (ALA). Thus in this study we investigated the usefulness of TechLab E. histolytica II ELISA for diagnosis of ALA by comparing it with IHA. This is a cross sectional study involving 58 suspected ALA patients who were admitted to the surgical ward, HUSM, Kelantan. The diagnosis of ALA was established based on clinical symptoms and signs, ultrasound and/or CT scan results. The serum specimens obtained from the patients were tested with IHA (Dade Behring Diagnostics, Marburg, Germany) and TechLab E. histolytica II ELISA (Techlab, Blacksburg, Virginia, USA) according to the manufacturers' instructions. Of the 58 patients, 72.4% (42) were positive by IHA and only 8.6% (5) were positive by the TechLab E. histolytica II ELISA. Agreement between the IHA and ELISA was poor (kappa value 0.019, p=0.691). There was also no correlation between ELISA results and IHA antibody titers. The TechLab E. histolytica II ELISA was not sensitive in detecting amoebic antigen in samples from ALA patients. In addition the results of the test did not correlate with the IHA anti-E. histolytica antibody titres. Therefore, the TechLab E. histolytica II ELISA was found not to be useful for serological diagnosis of ALA at HUSM.
  8. Jamail M, Andrew K, Junaidi D, Krishnan AK, Faizal M, Rahmah N
    Trop Med Int Health, 2005 Jan;10(1):99-104.
    PMID: 15655019
    We conducted a field study of a rapid test (Brugia Rapid) for detection of Brugia malayi infection to validate its sensitivity and specificity under operational conditions. Seven districts in the state of Sarawak, Malaysia, which are endemic for brugian filariasis, were used to determine the test sensitivity. Determination of specificity was performed in another state in Malaysia (Bachok, Kelantan) which is non-endemic for filariasis but endemic for soil-transmitted helminths. In Sarawak both the rapid test and thick blood smear preparation were performed in the field. The rapid test was interpreted on site, whereas blood smears were taken to the district health centres for staining and microscopic examination. Sensitivity of Brugia Rapid dipstick as compared with microscopy of thick blood smears was 87% (20/23; 95% CI: 66.4-97.2) whereas the specificity was 100% (512/512). The lower sensitivity of the test in the field than in laboratory evaluations (> or =95%), was probably due to the small number of microfilaraemic individuals, in addition to difficulties in performing the test in remote villages by field personnel. The overall prevalence of brugian filariasis as determined by the dipstick is 9.4% (95% CI: 8.2-0.5) while that determined by microscopy is 0.90% (95% CI: 0.5-1.3) thus the dipstick detected about 10 times more cases than microscopy. Equal percentages of adults and children were found to be positive by the dipstick whereas microscopy showed that the number of infected children was seven times less than infected adults. The rapid dipstick test was useful as a diagnostic tool for mapping and certification phases of the lymphatic filariasis elimination programme in B. malayi-endemic areas.
  9. Rahmah N, Shenoy RK, Nutman TB, Weiss N, Gilmour K, Maizels RM, et al.
    Trop Med Int Health, 2003 Oct;8(10):895-900.
    PMID: 14516300
    A multicentre evaluation of the Brugia Rapid dipstick test was performed using 1263 serum samples in four international laboratories, i.e. T.D. Medical College (TDMC, India), National Institutes of Health (NIH, USA), Swiss Tropical Institute (STI, Switzerland) and Leiden University Medical Centre (LUMC, Netherlands). In comparison with microscopy, the dipstick demonstrated sensitivities of 97.2% (70 of 72) at TDMC, 91.6% (175 of 191) at LUMC and 100% (six of six) at STI. Sera of chronic patients showed a positivity rate of 11.3% (19 of 168) and 61.2% (71of 116) at TDMC and LUMC, respectively. All 266 sera of non-endemic normals from STI, NIH and LUMC tested negative with the dipstick. At LUMC, sera of 'endemic normals' (amicrofilaraemics with no clinical disease) from an area with approximately 35% microfilaria positivity showed 60.8% positive results (31 of 51), thus demonstrating the likelihood of many cryptic infections occurring in this population. Specificities of the test with Onchocerca volvulus sera were 98.8% (80 of 81) and 100% (10 of 10) at the NIH and STI, respectively; while specificity with Loa loa sera at the NIH was 84.6% (44 of 52). At the STI, the dipstick test also demonstrated 100% specificity when tested with 75 sera from various protozoan and helminthic infections.
  10. Rahmah N, Lim BH, Azian H, Ramelah TS, Rohana AR
    Trop Med Int Health, 2003 Feb;8(2):158-63.
    PMID: 12581442
    Brugian filariasis infects 13 million people in Asia. The routine prevalence survey method using night thick blood smear is not sensitive enough to reflect the actual infection prevalence. In 1997-2001, only three microfilaraemic cases (of 5601 individuals screened; 0.05%) were reported in Pasir Mas, a district in Kelantan (Malaysia), which shares a border with Thailand. We therefore investigated the infection prevalence in this district by employing a sensitive and specific serological assay (Brugia-Elisa). This test is based on detection of specific IgG4 antibody against a Brugia malayi recombinant antigen. A total of 5138 children, aged 7-12 years, from 16 primary schools, were tested. Eighteen pupils in eight schools, located in five subdistricts, tested positive, giving an overall prevalence rate of 0.35%. Infection in these children is significant as they represent more recent cases. These subdistricts should be included in the national filariasis elimination programme.
  11. Rahmah N, Anuar AK, Ariff RH, Zurainee MN, A'shikin AN, Fadzillah A, et al.
    Trop Med Int Health, 1998 Mar;3(3):184-8.
    PMID: 9593356
    OBJECTIVE: To evaluate the usefulness of antifilarial IgG4 antibody assay in detecting B. malayi infection in a filaria endemic area in Malaysia.

    METHODS: A sandwich ELISA using B. malayi soluble antigen was employed to detect antifilarial IgG4 antibodies in serum samples of 330 individuals who comprised 88 healthy individuals from nonendemic areas, 15 B. malayi microfilaraemic cases, 22 individuals with soil-transmitted helminthiases, 9 elephantiasis cases and 196 residents from a B. malayi-endemic area. An O.D. value of > 0.420 at serum dilution of 1:400 was used as the cut-off point. This cut-off point was obtained by taking the mean optical density (0.252 + 4 S.E.) of 36 negative sera which had O.D. values greater than 0.1 at serum dilution of 1:400.

    RESULTS: All 15 microfilaraemic persons were positive for antifilarial IgG4 antibody. Non-endemic normals, soil-transmitted helminth infected persons and chronic elephantiasis cases were negative for antifilarial IgG4 antibody. Of the 196 individuals from the filaria endemic area, 37 (18.8%) demonstrated presence of antifilarial IgG4 antibodies; and only eight individuals (4.1%) were positive for microfilariae. All eight microfilaraemic individuals were also positive for antifilarial IgG4 antibodies.

    CONCLUSION: Antifilarial IgG4-ELISA could detect 4.6 times more positive cases than the microfilaria detection method. With appropriate cut-off values that eliminate cross-reactivities, this serological tool is very useful for Brugia malayi prevalence surveys and diagnosis.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links